
ASSIGNMENT 2

CS 474: Object-Oriented Languages and Environments / Spring 2023

Description
In this assignment, you will write a tool to inspect and modify the fields belonging to a Java object. Your tool

could be used to implement an IDE utility, as depicted above. You will use Java reflection to implement this

assignment. There are 10 test cases, worth 10 points each: undergraduate students need to get 80 points

total for full credit, while graduate students should get all 100 points.

For this assignment, you need to write a class that implements the interface ObjectInspector, as shown

below. You will be provided with startup code that you cannot modify (except as described in this

document), and you only have to submit an implementation to the interface described below.

interface ObjectInspector {

 Map<String, String> describeObject (Object o);

 void updateObject(Object o, Map<String, Object> fields);

}

Method describeObject takes a single argument, which is an Object. It should return a map with one

entry for each field in the object, where the key is the name of the field (qualified by the class name if it is a

static field) and the value is the description of the field. For full credit, you should list all fields of Object o,

including inherited, private, and static fields.

Method updateObject takes a map from field names to their desired values, and an object to perform

those writes to. It should write the provided value to the provided field in the object. For instance, calling

updateObject(o, { “a”: 0 , “b”: 1 }) should write the value 0 to field o.a and the value 1 to

field o.b.

Static Fields
When the argument of describeObject is of a class with static fields, they should be indicated by

prepending the name of the class to the name of the field as the key to that field’s entry. For instance, if

class A has a static field foo, the key for that field should be “A.foo”.

When the argument of describeObject is an instance of java.lang.Class, then the method should

describe only the static fields belonging to the class represented by the argument. For instance, using the

example in the paragraph above, describeObject(Class.forName(A)) should return a map with a

key “A.foo” .

Value Formatting

The main challenge in implementing describeObject is to format the value of each field in an

appropriate way given its type. Values should be formatted as follows:

• Primitive types

o int fields are described as the result of Integer.toString(int)

o char and boolean fields are similar to int but using methods

Character.toString(char) and Boolean.toString(boolean), respectively

o long fields are described as the result of Long.toString(long) followed by the string

“#L”. E.g., 872349234#L

o float and double fields are similar to long, but described with

Float.toString(float) and Double.toString(double) and followed by the

string “#F” and “#D”, respectively

o byte fields are described as a string starting with “0x” and followed by the hex value of

the byte, obtained through Integer.toHexString(int). E.g., 0xA1

o short fields are described as a string starting with zero “0” and followed by the octal

representation of the number through Integer.toOctalString(int)

• Boxed types (e.g. Integer, Character)

o All boxed types are described with a string starting with “Boxed ” and followed by the

primitive description of the boxed value (see above)

• Null references are described as the string “null”

• All other objects are described by a method named “debug” if there is one (see below), and by

their “toString” method otherwise

Grad Students Only: Debug Method
Some types have a debug method that should be called instead of toString when formatting values of

that type. A class has a debug method if:

• It has a non-static method called debug that returns a String and does not take any arguments.

o Your solution should call this method with the value as the receiver

• It has a static method called debug that returns a String and takes an argument of the right type.

o You should pass the value being described as the single argument

o If there are many such static methods, your solution can call any method that takes an

argument compatible with the type of the object being described

Grad Students Only: Exceptions
You may encounter exceptions when trying to display the value of a field, e.g. exceptions thrown by the

toString method. In that case, the description of that field should be as follows:

• For errors, “Raised error: ” followed by the fully qualified name of the class of the error. For

instance “Raised error: java.lang.Error”

• For checked exceptions, “Thrown checked exception: ” followed by the fully qualified

name of the class of the exception. For instance, “Thrown checked exception:

java.io.IOException”

• For unchecked exceptions, “Thrown exception: ” followed by the fully qualified name of the

class of the exception. For instance, “Thrown exception:

java.lang.NullPointerException”

• If the exception arises from a reflection-based method invocation, it will be wrapped in an

InvocationTargetException. In this case, you should display the underlying exception

(formatted as above), not the InvocationTargetException.

Entry Point
You should create a new class, in a new file, where you will implement your solution. You should change

method Main.getInspector so that it creates an instance of the class you added. You should not change any

other part of the code that is provided to you.

Due Date and Resubmission Policy
This assignment is due on February 27 2023 (Monday) at 11:59pm CST.

public abstract class Main {

 static ObjectInspector getInspector() {

 throw new Error("Not implemented");

 }

}

The code and date used for your submission is defined by the last commit to your Git repository.

Submission and Grading
This assignment is submitted through GitHub, and has an automatic grade component of 100%. You can

check your current grade at any point by submitting your code and checking the autograder. The automatic

grade is determined by 10 tests that will check if your project outputs the expected result. Each test is worth

10%.

Errors and Omissions
If you find an error or an omission, please post it on Piazza as soon as you find it.

Academic Integrity
The academic integrity policy described in the syllabus applies to this assignment. You are responsible for

writing all the code that you submit. We will use an automatic tool that detects plagiarism on all submitted

code, and we will investigate all instances where plagiarism is more than likely.

Please refer to the syllabus for the full academic integrity policy.

