
ASSIGNMENT 1

CS 474: Object-Oriented Languages and Environments / Spring 2023

Description
In this assignment, you will have to write a tool to explain all methods that can be invoked at a particular call

site, taking inheritance and dynamic dispatch into account. Your tool could be used to implement an IDE

utility, as depicted above. You will use the Java Parser library1 to access the structure of the Java source code

provided to you.

For this assignment, you need to write a class that implements the interface

DynamicDispatchExplainer, as shown below. You will be provided with startup code that you cannot

modify (except as described in this document), and you only have to submit an implementation to the

interface described below.

interface DynamicDispatchExplainer {

 Set<String> explain(

 Map<String, ClassOrInterfaceDeclaration> classes,

 String receiverType,

 String methodName,

 String ... argumentTypes);

}

The single method takes the following arguments:

• classes is a Java map from String to ClassOrInterfaceDeclaration.2

o The map contains all classes that you should process as entries

1 https://javaparser.org/
2 https://www.javadoc.io/doc/com.github.javaparser/javaparser-
core/3.3.2/com/github/javaparser/ast/body/ClassOrInterfaceDeclaration.html

https://javaparser.org/
https://www.javadoc.io/doc/com.github.javaparser/javaparser-core/3.3.2/com/github/javaparser/ast/body/ClassOrInterfaceDeclaration.html
https://www.javadoc.io/doc/com.github.javaparser/javaparser-core/3.3.2/com/github/javaparser/ast/body/ClassOrInterfaceDeclaration.html

o The key of each entry is the name of that class

o The value of each entry is a JavaParser object that allows you to access the structure of the

target class (i.e., all methods, fields, super classes, etc.)

• receiverType is the name of the type of the receiver (e.g., “A” in the picture above)

• methodName is the name of the method being invoked (e.g., “overriden” in the picture above)

• argumentTypes are the names of the types of the arguments of the method being invoked

Method explain should return a set with the name of all the classes that have an implementation of the

method being invoked, and that can be reached from that call site depending on the dynamic type of the

receiver.

Method explain should consider only methods invoked through dynamic dispatch, and ignore methods

invoked through static dispatch (e.g., private and static methods).

Examples
Consider the following Java class hierarchy:

explain(classes, “C”, “overridenAC”, “String”, “Top”) should return the set{“C”}.

• This is equivalent to the following Java code:

C c = … ; Top top = … ; c.overridenAC(“CS474”, top);

• The only implementation that can be called is C.overridenAC

explain(classes, “B”, “overridenAC”, “String”, “Top”) should return the set {“A”,“C”}.

• This is equivalent to the following Java code:

B b = … ; Top top = … ; b.overridenAC(“CS474”, top);

• Class B inherits method overridenAC from class A, so the implementation A.overridenAC can

be called when B b = new B();

• Class C defines its own implementation of method overridenAC, which can be called with

B b = new C(); …

explain(classes, “Top”, “overridenAC”, “String”, “Top”) should return the set

{ “Top”, “A”, “C” }, as each of the classes listed in the set provides its own implementation of

method overridenAC.

class Top {

 void overridenAC(String s, Top t) { }

 void notOverriden() { }

}

class A extends Top { void overridenAC(String a, Top t) { } }

class B extends A { }

class C extends B { void overridenAC(String a, Top t) { } }

Reflection
This assignment cannot be solved with Java reflection. There will be a future assignment dedicated to using

Java reflection. As such, you should refrain from using class java.lang.Class or any class belonging to

the java.lang.reflect package.

java.lang.Object
Your solution should consider the class at the root of the Java hierarchy java.lang.Object. This

includes considering methods inherited from java.lang.Object, and receivers of type

java.lang.Object.

Entry Point
You should create a new class, on a new file, where you will implement your solution. You should change

method Main.getExplainer so that it creates an instance of the class you added. You cannot change any

other part of the code that is provided to you.

Due Date and Resubmission Policy
This assignment is due on February 11 2023 (Saturday) at 5pm CST.

The code and date used for your submission is defined by the last commit to your Git repository.

Submission and Grading
This assignment is submitted through Github, and has an automatic grade component of 100%. You can

check your current grade at any point by submitting your code and checking the autograder. The automatic

grade is determined by 10 tests that will check if your project outputs the expected result. Each test is worth

10%.

Errors and Omissions
If you find an error or an omission, please post it on Piazza as soon as you find it.

public abstract class Main {

 static DynamicDispatchExplainer getExplainer() {

 throw new Error("Not implemented");

 }

}

Academic Integrity
The academic integrity policy described in the syllabus applies to this assignment. You are responsible for

writing all the code that you submit. We will use an automatic tool that detects plagiarism on all submitted

code, and we will investigate all instances where plagiarism is more than likely.

Please refer to the syllabus for the full academic integrity policy.

