
ASSIGNMENT 2

CS 474: Object-Oriented Languages and Environments / Fall 2021

Description
In this assignment, you will have to write a tool to inspect and modify all the fields belonging to a Java object.

Your tool could be used to implement an IDE utility, as depicted above. You will use Java reflection to

implement this assignment.

For this assignment, you need to write a class that implements the interface ObjectInspector, as shown

below. You will be provided with startup code that you cannot modify (except as described in this

document), and you only have to submit an implementation to the interface described below.

interface ObjectInspector {

 Map<String, String> describeObject (Object o);

 void updateObject(Object o, Map<String, Object> fields);

}

Method describeObject takes a single argument, which is the object owning the fields to describe. It

returns a map with one entry for each field. The key is the name of the field. The value is the description of

the field as follows:

• Primitive types

o int fields are described as the result of Integer.toString(int)

o char and boolean fields are similar to int but using methods

Character.toString(char) and Boolean.toString(boolean), respectively

o long fields are described as the result of Long.toString(long) followed by the string

“#L”. E.g., 872349234#L

o float and double fields are similar to long, but described with

Float.toString(float) and Double.toString(double) and followed by the

string “#F” and “#D”, respectively

o byte fields are described as a string starting with “0x” and followed by the hex value of

the byte, obtained through Integer.toHexString(int). E.g., 0xA1

o short fields are described as a string starting with zero “0” and followed by the octal

representation of the number through Integer.toOctalString(int)

• Boxed types

o All boxed types are described with a string starting with “Boxed “ and followed by the

primitive description of the boxed value (see above)

• Null references are described as the string “null”

• All other objects are described by their “toString” method or by a method named “debug” if

there is one (see below)

Method updateObject takes a map of names of fields to be updated as the key and the new value to

write to each field as the value, and the object to perform those writes to. It should write the provided value

to the provided field in the object. For instance, calling updateObject(o, { “a”: 0 , “b”: 1})

should write the value 0 to field o.a and the value 1 to field o.b.

Static Fields
Static fields should be indicated by prepending the name of the class to the name of the field as the key to

that field’s entry. For instance, if class A has a static field foo, the key to that field should be “A.foo”

When the argument of describeObject is an instance of java.lang.Class, then the method should

describe the only static fields belonging to the class represented by the argument. For instance, using the

example in the paragraph above, describeObject(Class.forName(A)) should return a map with a

key “A.foo”

Exceptions
Invoking method toString and debug may result in an exception. In that case, the description of that

field should be as follows:

• For errors, “Raised error: “ followed by the fully qualified name of the class of the error. For

instance “Raised error: java.lang.Error”

• For checked exceptions, “Thrown checked exception: “ followed by the fully qualified

name of the class of the exception. For instance, “Thrown checked exception:

java.io.IOException”

• For unchecked exceptions, “Thrown exception: “ followed by the fully qualified name of the

class of the exception. For instance, “Thrown exception:

java.lang.NullPointerException”

Debug Method
Instead of calling method toString, your code should call method debug if one exists, as described

below:

• There is a non-static method called debug that returns a String and does not take any

arguments.

o Your solution should call this method with the object as the receiver

• There is a static method called debug that returns a String and takes a single argument.

o You should pass the object being described as the single argument

o If there are many such static methods, your solution can call any method that takes an

argument compatible with the type of the object being described

Collisions
If there are many fields with the same name in different classes, your solution should disambiguate each field

by using the following rules:

• Static fields: Prepend the name of the class that defines the static field to the name of the field (e.g.,

“A.field” and “B.field”)

• Instance fields: Prepend the name of the class that defines the field with the string “.this.” (e.g.,

“A.this.field” and “B.this.field”)

Entry Point
You should create a new class, on a new file, where you will implement your solution. You should change

method Main.getExplainer so that it creates an instance of the class you added. You cannot change any

other part of the code that is provided to you.

Due Date and Resubmission Policy
This assignment is due on October 2 2021 (Saturday) at 5pm CST. There is no late policy.

The code and date used for your submission is defined by the last commit to your Git repository.

To resubmit this assignment, your original grade (as defined by the autograder) should be equal to or higher

than 30%. You can resubmit your assignment until October 9 2021 (following Saturday) at 5pm CST.

Together with your resubmission, you will have to submit a written description of what you changed from the

original submission (on Gradescope).

public abstract class Main {

 static ObjectInspector getInspector() {

 throw new Error("Not implemented");

 }

}

Bonus Points
This assignment has a total of 10% bonus points, which you can earn by using Piazza as described in the

syllabus. Your posts should be public, tagged with the assignment2 label, and non-anonymous to the

instructors to count towards the bonus.

Submission and Grading
This assignment is submitted through Github, and has an automatic grade component of 100%. You can

check your current grade at any point by submitting your code and checking the autograder. The automatic

grade is determined by 10 tests, that will check if your project outputs the expected result. Each test is worth

10%.

Graduate students should also submit a video explaining their solution. For graduate students, each test is

worth 9%, for a total of 90%, and the video is worth 10%. The maximum length for the video is 5 minutes.

This video should be a screencast of their IDE open on the code submitted, and the student should highlight

the code and narrate the purpose of the highlighted code. You can record such a video without installing any

software by using the following website: https://screenapp.io/#/

The grading rubrics for the screencast are as follows:

• Staying within the time limit

• Breaking down the problem into small methods that prevent/avoid copy-pasting code, and only

showing the interesting methods directly related with this assignment

• Clear understanding of the reflection APIs used (e.g., getFields vs getDeclaredFields)

• Correct handling of exceptions

The final grade for the assignment will be the grade of the original submission, for assignments without a

resubmission; or the average between the original grade and the resubmission grade, for assignments with a

resubmission. The grade of the original submission includes any bonus points.

Errors and Omissions
If you find an error or an omission, please post it on Piazza as soon as you find it.

Hardcoding and Academic Integrity
Any hardcoding will result in a 0% grade. Hardcoding is when you submit code that detects which test is

being run, and simply outputs the expected result. For instance, detecting that test 22 is running, and

replacing the usual execution of your submission with System.out.println(“expected

result”).

https://screenapp.io/#/

The academic integrity policy described in the syllabus applies to this assignment. You are responsible for

writing all the code that you submit. We will use an automatic tool that detects plagiarism on all submitted

code, and we will investigate all instances where plagiarism is more than likely.

Please refer to the syllabus for the full academic integrity policy.

