
ASSIGNMENT 1

CS 474: Object-Oriented Languages and Environments / Fall 2020

Description
In this assignment, you will have to write a tool to detect methods that are overridden and overloaded given

a set of Java classes as source code. You will use the Java Parser library1 to access the structure of the Java

source code provided to you.

For this assignment, you need to write a class that implements the interface OverloadOverrideFinder,

as shown below. You will be provided with startup code that you cannot modify (except as described in this

document), and you only have to submit an implementation to the interface described below.

interface OverloadOverrideFinder {

 Map<String, Map<String, Integer>> getOverloads(Map<String, ClassOrInterfaceDeclaration> classes);

 Map<List<String>, Set<String>> getOverrides(Map<String, ClassOrInterfaceDeclaration> classes);

}

Both methods take the same argument, a Java map from String to

ClassOrInterfaceDeclaration.2

• The map contains all classes that you should process as entries.

• The key of each entry is the name of that class.

• The value of each entry is a JavaParser object that allows you to access the structure of the target

class (i.e., all methods, fields, super classes, etc.)

1 https://javaparser.org/
2 https://www.javadoc.io/doc/com.github.javaparser/javaparser-
core/3.3.2/com/github/javaparser/ast/body/ClassOrInterfaceDeclaration.html

https://javaparser.org/
https://www.javadoc.io/doc/com.github.javaparser/javaparser-core/3.3.2/com/github/javaparser/ast/body/ClassOrInterfaceDeclaration.html
https://www.javadoc.io/doc/com.github.javaparser/javaparser-core/3.3.2/com/github/javaparser/ast/body/ClassOrInterfaceDeclaration.html

The behavior of each method is as follows:

• getOverloads

o List all the method overloads present in the Java classes passed as argument.

o The return is a Java map from string to another map from string to integer.

o The outer map has one entry with the name of each class present in the argument

classes. The key is the name of each class.

o The inner map has one entry per overloaded method, and how many times that method is

overloaded. They key is the name of the method, the value is the number of overloads in

that class.

o Example: Calling getOverloads on the class below should return the map

▪ { “A” -> { “overloadedMethod”, 2 } }

• getOverrides

o List all the method overrides present in the Java classes passed as argument.

o The return is a Java map from a list of string to a set of strings.

▪ The key contains the name of the overridden method in the first position of the list,

followed by the types of the arguments for that overridden method, in the same

order they are declared in the Java source.

▪ The value contains the name of all the classes that override that method in no

particular order.

o Examples: Calling getOverrides on the classes below should return the map

▪ { [overridenAC, String, Top] -> { “A”, “C” } }

class A {

 void overloadedMethod() { }

 void overloadedMethod(int argument) { }

}

class Top {

 void overridenAC(String s, Top t) { }

 void notOverriden() { }

}

class A extends Top { void overridenAC(String a, Top t) { } }

class B extends A { }

class C extends B { void overridenAC(String a, Top t) { } }

Entry Point
You should create a new class, on a new file, where you will implement your solution. You should change

method Main.getFinder so that it creates an instance of you’re the class you added. You cannot change any

other part of the code that is provided to you.

Due Date and Resubmission Policy
This assignment is due on September 19 2020 (Saturday) at 5pm CST. There is no late policy.

The code and date used for your submission is defined by the last commit to your Git repository.

To resubmit this assignment, your original grade (as defined by the autograder) should be equal to or higher

than 30%. You can resubmit your assignment until September 26 2020 (following Saturday) at 5pm CST.

Together with your resubmission, you will have to submit a written description of what you changed from the

original submission (on Gradescope).

Bonus Points
This assignment has a total of 10% bonus points, which you can earn by using Piazza as described in the

syllabus. Your posts should be public, tagged with the assignment1 label, and non-anonymous to the

instructors to count towards the bonus.

Submission and Grading
This assignment is submitted through Github, and has an automatic grade component of 100%. You can

check your current grade at any point by submitting your code and checking Travis. The automatic grade is

determined by 10 tests, that will check if your project outputs the expected result. Each test is worth 10%.

Graduate students should also submit a video explaining their solution. For graduate students, each test is

worth 9%, for a total of 90%, and the video is worth 10%. The maximum length for the video is 5 minutes.

This video should be a screencast of their IDE open on the code submitted, and the student should highlight

the code and narrate the purpose of the highlighted code. You can record such a video without installing any

software by using the following website: https://screenapp.io/#/

The final grade for the assignment will be the grade of the original submission, for assignments without a

resubmission; or the average between the original grade and the resubmission grade, for assignments with a

resubmission. The grade of the original submission includes any bonus points.

public abstract class Main {

 static Main getMain() {

 throw new Error("Not implemented");

 }

}

https://screenapp.io/#/

Errors and Omissions
If you find an error or an omission, please post it on Piazza as soon as you find it.

Hardcoding and Academic Integrity
Any hardcoding will result in a 0% grade. Hardcoding is when you submit code that detects which test is

being run, and simply outputs the expected result. For instance, detecting that test 22 is running, and

replacing the usual execution of your submission with System.out.println(“expected

result”).

The academic integrity policy described in the syllabus applies to this assignment. You are responsible for

writing all the code that you submit. We will use an automatic tool that detects plagiarism on all submitted

code, and we will investigate all instances where plagiarism is more than likely.

Please refer to the syllabus for the full academic integrity policy.

