AVES INTERMEDIATE
REPRESENTATION

CS 473: Compiler Design / Fall 2025

The Aves (the scientific name of the class of all birds) Intermediate Representation (IR) is a stack-based IR, in
which all operands are taken from the stack, and all results are left on the stack for the next operands. Some
IR operations use immediate values to specify exactly what to do. Below is a list of all possible operations,
and how they manipulate the stack (S denotes “the rest of the stack”):

Constants and arithmetic

Operation Immediates Stack Stack Description
before after
ICONST int S <int> Pushes the integer specified as an immediate
S
SCONST string S <address> Pushes the string specified as an immediate,
S leaves its address on top of the stack.
<int2> <int3> Performs a binary operation on the two
<int1> S values on top of the stack, leaves the result
S on top of the stack
<int3> = <int1> OP <int2>
<intl> <int2> Performs a unary operation on the value on
S S top of the stack, leaves the result on top of
the stack

<int2> = OP <int1>

Aves supports binary and unary operations. Both types of operations leave the result on top of the stack.
Binary operations take two operands from the stack, and unary operations take their single argument from
the stack. All operations are signed unless told otherwise. Overflow behavior is undefined.

Binary operations

Stack before Stack after Notes
S <A> S <A+B>

S <A> S <A-B>

S <A> S <A*B>

S <A> S <A/B>

S <A> S <A%B>

S <A> S<A|B> Bitwise OR

S <A> S <A&B> Bitwise AND

S <A> S <A7B>

S <A> S<A||B> Logical OR

S <A> S <A&&B> Logical AND

S <A> S <A==B> Not zero if A has the same value as B, zero
otherwise

S <A> S <A Not zero if Ais less than B, zero otherwise

P s<As S <A>B> Not zero if A is greater than B, 0 otherwise
Unary operations

Name Stack before Stack after Notes

m S <A> S <IA> Zero if A is not zero, Not zero if A is zero
Control flow
Operation Immediates Stack Stack Description
before after
S S No-operation, does perform any
computation, does not modify the stack
BRANCH ir_label * <int> S Jumps to the label specified in the immediate
S if the value on top of the stack is zero
ir_label * S S Jumps to the label specified in the
immediate. Leaves the stack unchanged
ir_label * S S Adds a label, specified in the immediate, that

other IR instructions can jump. Leaves the
stack unchanged

Here is an example of conditional control flow:

Source code IR Stack Stack Notes
Before | After
if (<cond>) <cond> S int Should leave the result of
<then> S evaluating the condition on top
of the stack, either zero or non-
Zero
Branch (LO) int S Jumps to the label LO if the
S result on top of the stack is
zero, otherwise continues to
execute
<then> S S
Label (LO) S S Target of the branch, needs to be
added to the IR to denote where
the <then> part of the program
ends.

Intrinsics

Operation Immediates Stack Stack Description
before after
NN [e enum intrinsic <arg> S Performs the intrinsic operation specified in
S the immediate (see operations below).
Takes one argument from the top of the
stack.
Aves supports 3 types of intrinsic (built-in) functions:
Name Stack before Stack after Notes

INTRINSIC_EXIT S <int> Exits with the exit code on top of the stack
INTRINSIC_PRINT_INT S <int> S Prints the int on top of the stack

INTRINSIC_PRINT_STRING S <addr> S Prints the zero-terminated string which
address is on top of the stack

Variables
Operation Immediates Stack Stack Description
before after
RESERVE int size S S Reserves memory for a global variable.
char * name Leaves the stack unchanged. The immediate
values specify the name, and the size in
bytes.
D] elHo)l:7\EN char * name S <addr> Pushes the address of the global variable,
S referenced in the immediate char*, to the
top of the stack

<addr> <int> Reads the integer value of the variable
S S specified with an address on top of the stack,
leaving the value on top of the stack.
WRITE <newval> S Writes the value on top of the stack to the
<addr> variable specified by the address on the
S second position of the stack.

Example, in which each address is color-coded with the read/write operation that uses it:

Source code IR Stack Before Stack After
a=a+1; addr global “a” S <addr &a>
S
| addr_global “a” <addr &a>
S <addr &a>
S

(continues on next page)

a=a+ 1; - <int>
<addr &a> <addr &a>
(continued) S S
iconst 1 <int> <int>
<addr &a> <int>
S <addr &a>
S
ops (ir_add) <int> <int>
<int> <addr &a>
<addr &a> S
S
write <int> S
<addr &a>
S
Functions
Operation Immediates Stack Stack Description
before after
FUNCION ir_label * S S Defines where a function starts, named using
int the label in the immediate, and reserves
space for N local variables, specified in the
immediate
ir_label * <argN> <int2> Calls the function specified by the label in the
int ret immediates, consuming N+1 elements from
<arg2> the stack where N is the number of
<argl> arguments provided to the instruction.
<intl> Leaves a return integer on top of the stack.
S
<int> S Returns from the given function with the
S value on top of the stack. It is not possible to
return from top-level code.
ADDR_LOCAL @i S <addr> Reads the address of a local variable or

S argument specified by its index as an
immediate, leaves it on top of the stack.

Function arguments are passed via the stack. The first argument on the stack should be an arbitrary number

(to reserve stack space for the return value). fhen, the arguments must be on the stack, in the same order in
_ Finally, a CALL instruction specifies how many arguments to pass to the

function, and which function to call. Upon return from a CALL instruction, the return is left on top of the
stack. In the IR, all functions return an integer.

Inside a function, _ The first argument is at index 0, the second

argument is at index 1, etc. Reading an argument pushes it to the top of the stackBElRg[{ Rl g dle]y!

returns the value on top of the stack, and jumps to the instruction immediate after the CALL that resulted in

invoking the function. As such, it stops executing the current function§

Example:

Source code Function IR Call IR

int add3(int a, int b, int c¢) Function (“add3”, 0);
{

return a+t+b+c;
} Op(ir add);

Iconst (<any number>) ;

print_int (add3(400,70,3)); Op(ir add);

Intrinsic(intrinsic print int);
Return () ;

Stack manipulation

Operation Immediates Stack Stack Description
before after
<int> S Discards the value on top of the stack
S
<val> <val> Duplicates the value on top of the stack
S <val>
S
<addr> <int> Turns an address on top of the stack into an
S S integer, representing the same value, also
left of top of the stack
<int> <addr> Turns an integers on top of the stack into an
S S address, representing the same value, also

left on top of the stack

(continues on next page)

AVES interpreter

The provided AVES interpreter can execute a human readable AVES file, and it supports all the operations
above with the same names. The interpreter uses 8 bytes to represent integers and IR programs that reserve
less memory will result in a crash flagged by the address sanitizer (example shown below).

Bugs
Most crashes of the interpreter are likely to be a bug in the IR program (as described above, not reserving
enough memory for a variable) and very unlikely to be a bug in the interpreter itself. When reporting “bugs”,
please include the minimal IR program that shows the “bug”.

==764040==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x7bb5875e0070 at
pc 0x55885d3e68b2 bp 0x7££fc414492d0 sp O0x7££fc414492c0
WRITE of size 8 at 0x7bb5875e0070 thread TO

#0 0x55885d3e68bl in interp list interpret.c:519

#1 0x55885d3e7ed3 in interpret interpret.c:825

#2 0x55885d3e4665 in main main interp.c:27

#3 0x7£95888376b4 (/usr/lib/libc.so.6+0x276b4)

#4 0x7£9588837768 in libc start main (/usr/lib/libc.so.6)

#5 0x55885d3e4394 in start (interp)

Writing strings to global variables

When writing a string, represented as an address on top of the stack, to a global variable, the AVES
interpreter will actually copy the contents of the string to the memory reserved for that global variable. It
will copy all the string, which will trigger an address sanitizer error if there is not enough memory reserved on

the global variable.

The following program will write “CS473” to variable “s”:

Source code IR Stack After Notes
var string s := Reserve (“s”, 06) S strlen (“CS473”)=5 because
“CS473”; it doesn’t count the "\0°
character
printstring(s) ; Addr global (“a”) | <addr &a>
S
Sconst (Y"CS473") <addr &”CS473”>
<addr &a>
S
Write S Copies the contents of

“Cs473” to s

Addr _global (“a”) <addr &a>

Intrinsic S Prints “CS473”
PRINT_STRING

