
AVES INTERMEDIATE
REPRESENTATION

CS 473: Compiler Design / Fall 2025

The Aves (the scientific name of the class of all birds) Intermediate Representation (IR) is a stack-based IR, in

which all operands are taken from the stack, and all results are left on the stack for the next operands. Some

IR operations use immediate values to specify exactly what to do. Below is a list of all possible operations,

and how they manipulate the stack (S denotes “the rest of the stack”):

Constants and arithmetic
Operation Immediates Stack

before
Stack
after

Description

ICONST int S <int>
S

Pushes the integer specified as an immediate

SCONST string S <address>
S

Pushes the string specified as an immediate,
leaves its address on top of the stack.

OPS <int2>
<int1>

S

<int3>
S

Performs a binary operation on the two
values on top of the stack, leaves the result
on top of the stack
<int3> = <int1> OP <int2>

OPS <int1>
S

<int2>
S

Performs a unary operation on the value on
top of the stack, leaves the result on top of
the stack
<int2> = OP <int1>

Aves supports binary and unary operations. Both types of operations leave the result on top of the stack.

Binary operations take two operands from the stack, and unary operations take their single argument from

the stack. All operations are signed unless told otherwise. Overflow behavior is undefined.

Binary operations
Name Stack before Stack after Notes

ir_add S <A> S <A+B>

ir_sub S <A> S <A-B>

ir_mul S <A> S <A*B>

ir_div S <A> S <A/B>

ir_mod S <A> S <A%B>

ir_bor S <A> S <A|B> Bitwise OR

ir_band S <A> S <A&B> Bitwise AND

ir_xor S <A> S <A^B>

ir_or S <A> S <A||B> Logical OR

ir_and S <A> S <A&&B> Logical AND

ir_eq S <A> S <A==B> Not zero if A has the same value as B, zero
otherwise

ir_lt S <A> S <A Not zero if A is less than B, zero otherwise

ir_gt S <A> S <A>B> Not zero if A is greater than B, 0 otherwise

Unary operations

Name Stack before Stack after Notes

ir_not S <A> S <!A> Zero if A is not zero, Not zero if A is zero

Control flow
Operation Immediates Stack

before
Stack
after

Description

NOP S S No-operation, does perform any
computation, does not modify the stack

BRANCH ir_label * <int>
S

S Jumps to the label specified in the immediate
if the value on top of the stack is zero

JUMP ir_label * S S Jumps to the label specified in the
immediate. Leaves the stack unchanged

LABEL ir_label * S S Adds a label, specified in the immediate, that
other IR instructions can jump. Leaves the
stack unchanged

Here is an example of conditional control flow:

Source code IR Stack
Before

Stack
After

Notes

if (<cond>)

 <then>

<cond> S int

S

Should leave the result of

evaluating the condition on top

of the stack, either zero or non-

zero

Branch(L0) int

S

S Jumps to the label L0 if the

result on top of the stack is

zero, otherwise continues to

execute

<then> S S

Label(L0) S S Target of the branch, needs to be

added to the IR to denote where

the <then> part of the program

ends.

Intrinsics
Operation Immediates Stack

before
Stack
after

Description

INTRINSIC enum intrinsic <arg>
S

S Performs the intrinsic operation specified in
the immediate (see operations below).
Takes one argument from the top of the
stack.

Aves supports 3 types of intrinsic (built-in) functions:

Name Stack before Stack after Notes

INTRINSIC_EXIT S <int> Exits with the exit code on top of the stack

INTRINSIC_PRINT_INT S <int> S Prints the int on top of the stack

INTRINSIC_PRINT_STRING S <addr> S Prints the zero-terminated string which
address is on top of the stack

Variables
Operation Immediates Stack

before
Stack
after

Description

RESERVE int size
char * name

S S Reserves memory for a global variable.
Leaves the stack unchanged. The immediate
values specify the name, and the size in
bytes.

ADDR_GLOBAL char * name S <addr>
S

Pushes the address of the global variable,
referenced in the immediate char*, to the
top of the stack

READ <addr>
S

<int>
S

Reads the integer value of the variable
specified with an address on top of the stack,
leaving the value on top of the stack.

WRITE <newval>
<addr>

S

S Writes the value on top of the stack to the
variable specified by the address on the
second position of the stack.

Example, in which each address is color-coded with the read/write operation that uses it:

Source code IR Stack Before Stack After
a = a + 1; addr_global “a” S <addr &a>

S

addr_global “a” <addr &a>

S

<addr &a>

<addr &a>

S

(continues on next page)

a = a + 1;

(continued)

read <addr &a>

<addr &a>

S

<int>

<addr &a>

S

iconst 1 <int>

<addr &a>

S

<int>

<int>

<addr &a>

S

ops(ir_add) <int>

<int>

<addr &a>

S

<int>

<addr &a>

S

write <int>

<addr &a>

S

S

Functions
Operation Immediates Stack

before
Stack
after

Description

FUNCION ir_label *
int

S S Defines where a function starts, named using
the label in the immediate, and reserves
space for N local variables, specified in the
immediate

CALL ir_label *
int

<argN>
…

<arg2>
<arg1>
<int1>

S

<int2>
ret

Calls the function specified by the label in the
immediates, consuming N+1 elements from
the stack where N is the number of
arguments provided to the instruction.
Leaves a return integer on top of the stack.

RET <int>
S

S Returns from the given function with the
value on top of the stack. It is not possible to
return from top-level code.

ADDR_LOCAL Int S <addr>
S

Reads the address of a local variable or
argument specified by its index as an
immediate, leaves it on top of the stack.

Function arguments are passed via the stack. The first argument on the stack should be an arbitrary number

(to reserve stack space for the return value). Then, the arguments must be on the stack, in the same order in

which the function declares them. Finally, a CALL instruction specifies how many arguments to pass to the

function, and which function to call. Upon return from a CALL instruction, the return is left on top of the

stack. In the IR, all functions return an integer.

Inside a function, each argument can be accessed by their index. The first argument is at index 0, the second

argument is at index 1, etc. Reading an argument pushes it to the top of the stack. The return instruction

returns the value on top of the stack, and jumps to the instruction immediate after the CALL that resulted in

invoking the function. As such, it stops executing the current function.

Example:

Source code Function IR Call IR
int add3(int a, int b, int c)

{

 return a+b+c;

}

print_int(add3(400,70,3));

Function(“add3”, 0);

ArgLocal(0);

ArgLocal(1);

Op(ir_add);

ArgLocal(2);

Op(ir_add);

Return();

Iconst(<any number>);

Iconst(400);

Iconst(70);

Iconst(3);

Call(“add3”,3);

Intrinsic(intrinsic_print_int);

Stack manipulation
Operation Immediates Stack

before
Stack
after

Description

POP <int>
S

S Discards the value on top of the stack

DUP <val>
S

<val>
<val>

S

Duplicates the value on top of the stack

A2I <addr>
S

<int>
S

Turns an address on top of the stack into an
integer, representing the same value, also
left of top of the stack

I2A <int>
S

<addr>
S

Turns an integers on top of the stack into an
address, representing the same value, also
left on top of the stack

(continues on next page)

AVES interpreter
The provided AVES interpreter can execute a human readable AVES file, and it supports all the operations

above with the same names. The interpreter uses 8 bytes to represent integers and IR programs that reserve

less memory will result in a crash flagged by the address sanitizer (example shown below).

Bugs
Most crashes of the interpreter are likely to be a bug in the IR program (as described above, not reserving

enough memory for a variable) and very unlikely to be a bug in the interpreter itself. When reporting “bugs”,

please include the minimal IR program that shows the “bug”.

===

==764040==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x7bb5875e0070 at

pc 0x55885d3e68b2 bp 0x7ffc414492d0 sp 0x7ffc414492c0

WRITE of size 8 at 0x7bb5875e0070 thread T0

 #0 0x55885d3e68b1 in interp_list interpret.c:519

 #1 0x55885d3e7ed3 in interpret interpret.c:825

 #2 0x55885d3e4665 in main main_interp.c:27

 #3 0x7f95888376b4 (/usr/lib/libc.so.6+0x276b4)

 #4 0x7f9588837768 in __libc_start_main (/usr/lib/libc.so.6)

 #5 0x55885d3e4394 in _start (interp)

Writing strings to global variables

When writing a string, represented as an address on top of the stack, to a global variable, the AVES

interpreter will actually copy the contents of the string to the memory reserved for that global variable. It

will copy all the string, which will trigger an address sanitizer error if there is not enough memory reserved on

the global variable.

The following program will write “CS473” to variable “s”:

Source code IR Stack After Notes
var string s :=

“CS473”;

printstring(s);

Reserve(“s”, 6) S strlen(“CS473”)=5 because

it doesn’t count the `\0`

character

Addr_global(“a”) <addr &a>

S

Sconst(“CS473”) <addr &”CS473”>

<addr &a>

S

Write S Copies the contents of

“CS473” to s

Addr_global(“a”) <addr &a>

S

Intrinsic

PRINT_STRING

S Prints “CS473”

