
CARDINAL

Language Definition

CS 473: Compiler Design / Fall 2025

The Cardinal language is an imperative language very similar to the C language. Cardinal is a templating

language that can appear in the middle of documents. A program in Cardinal has the form:

Document contents

<?cardinal?>

<variables>

<functions>

<statements>

<?/cardinal?>

Document contents

Where:

• <?cardinal?> and <?/cardinal?> denote where a cardinal program starts and ends

• Variables: a sequence of global variables available to the rest of the program. All global variables

are defined here.

• Functions: a sequence of functions available to the rest of the program. Functions may be defined

in any order, and function f can call function g not yet defined, as long as function g is defined later

in the same program.

• Statements: a list of statements that can call the functions defined above, and that can use the

global variables defined above.

Types
Cardinal has a few built-in types, and does not provide the ability for programmers to define their own types:

• Integer: Signed integer numbers which are 4-bytes long, denoted by int

• Strings: Sequences of characters located sequentially in memory, denoted by string

• Void: Only used as a return type for functions, means that the function does not return any value.

Denoted by void

Variable definition
All variables, global and local, are defined in the same way:

var <name> <type> := <expression> ;

Where:

• Var: The sequence of characters “var” or indicating that a variable is being defined.

• Name: is the name of the variable. A global variable name is accessible for the rest of the program, a

local variable name is accessible for the function in which it is defined.

• Type: the type of the variable.

• Expression: An expression that evaluates to a value of the correct type, which is the initial value for

the variable. Initializing variables is mandatory in Cardinal.

Function definition
Functions in Cardinal are defined as follows:

fun <name> <type> (<arguments>) {

 <variables>

 <statements>

}

Where:

• Fun: The sequence of characters “fun” indicating that a function is being defined.

• Name: is the name of the function, available anywhere in the same program (even before the

function is defined).

• Type: is the return type of the function.

• Arguments: is a list of arguments. The list can be empty for functions that do not accept any

arguments (i.e., ()). Each argument is defined as where name is the

name of the argument, available as a variable inside the function body; and type is the type of the

argument. Arguments are separated by commas.

o Example: (argument1 int , argument2 string)

• Variables: a sequence of local variables available to the function

o See section Variable definition above

• Statements: a list of statements which constitutes the body of the function. The statements should

be executed in the order they are defined.

<name> <type>

Statements

The Cardinal language has the statements defined below:

• Set: Takes the form and means: execute

expression first, then assign its value to lhs.

o lhs: short for “left-hand side”, can be a variable or an array access.

• Return: Takes the form and means: execute

expression first, then use the resulting value as the return value of the current function. When

used outside of a function, this statement can return an integer as the exit code of the program.

expression is optional on functions that return void.

• If: Takes the form and means:

execute the expression and execute the then statement if the result is not zero, otherwise

evaluate the else statement (if the result is zero). The else portion is optional.

• While: Takes the form and

means: execute the expression. If it the value is not zero, execute the body statements, and

repeat (i.e., execute the expression again). If the value is zero, finish executing the while

statement.

o When the while statement never executes the body, it executes the otherwise

statements once. The otherwise statements are optional.

• Do-while: Takes the form and means: execute the

body statements first, then execute the expression. If it the value is not zero, execute the

body , and repeat (i.e., execute the expression again). If the value is zero, finish executing the

do-while statement.

• Repeat: Takes the form and means: execute the

expression once, which should evaluate to an integer. Then, repeat the body statements that

many times without re-evaluating the expression again.

Expressions
• Integer constants:

o Decimal constants: Take the form of a number in base 10 (e.g., 473) and results in the value

of that constant.

o Octal constants: sequences of numbers in base 8 (i.e., between 0 and 7) that start with one

leading zero (e.g., the octal 010 should evaluate to the decimal value 9).

o Hexadecimal constants: sequences of numbers in base 16 (i.e., numbers between 0 and 9

and capital characters between A and F) starting with 0x (e.g., the hex 0xB should evaluate

to the decimal value 11).

<lhs> := <expression> ;

return <expression> ;

if (<expression>) then { <statements> } else { <statements }

while (<expression>) { <statements> } otherwise { <statements }

do { <statements> } while (<expression>);

repeat (<expression>) { <statements> }

• String constants: Take the form of a sequence of characters surrounded by double-quotes (e.g.,

“CS473”) and evaluates to that string. Strings in Cardinal have the following escape characters:

o `n -> new line character

o `t -> tab character

o `” -> double-quote character

o `` -> the escape character itself `

• Binary expressions: Take the form

and means: execute each expression and perform the operator on the resulting values. The order of

evaluation is not defined and left up to each implementation. Binary expressions are not applicable

to strings and arrays.

o Operators:

▪ + Sum/addition

▪ - Minus/subtraction

▪ * Times/multiplication

▪ / Over/division. The behavior on a division by zero is not defined and left up to

each implementation

▪ % Remainder. The behavior of a remainder by zero is not defined

▪ & Bitwise AND

▪ | Bitwise OR

▪ ^ Bitwise XOR

• Logical expressions: Take the form

and means: execute each expression and perform the logical operation on the resulting values,

resulting in zero for false and not zero for true. The order of evaluation is not defined and left up to

each implementation. Logical expressions are not applicable to strings and arrays.

o Operators:

▪ < Less than

▪ <= Less than or equal to

▪ > Greater than

▪ >= Greater than or equal to

▪ == Equals

▪ <> Not equals

o Short-circuiting operators: These operators only evaluate the right-hand side (rhs) if the

result of the left-hand side (lhs) cannot determine the result of the whole operation:

▪ && Logical AND: Only evaluates the rhs if the lhs evaluates to true (a false lhs

means that the operation result is already false regardless of the value of the rhs)

▪ || Logical OR: Only evaluates the rhs if the lhs evaluates to false (a true lhs means

that the operation result is already true regardless of the value of the rhs)

<expression> <operator> <expression>

<expression> <operator> <expression>

• Unary operators: There is only one such operator, which takes the form

which evaluates to zero if the expression evaluates to non-zero, and evaluates to non-zero if the

expression evaluates to zero

• Variable access: Takes the form and evaluates to the value stored in the variable

name

• Function call: Takes the form where name is a function

name and expressions is a comma-separated list of expressions. Evaluates each expression and

calls the function by passing the resulting value of each expression as the argument in the same

position.

o The order of evaluation of the expressions is not defined and left up to each implementation

o When the function terminates (by executing a return statement), the program resumes

execution immediately after the function call expression.

Comments
Comments in Cardinal start with the character # and last until the end of the current line.

Operator precedence and associativity
The table below explains the operator precedence and associativity in the Cardinal language. Lower numbers

of precedence mean higher precedence (i.e., top of the table has higher precedence than bottom of the

table).

Precedence Operator Associativity

1 Function call, array access () [] Left-to-right

2 Logical NOT ! Right-to-left

3 Multiplication, division, remainder * / %

Left-to-right

4 Addition, subtraction + -

5 Relational operators < <= > >=

6 Equality == <>

7 Bitwise AND &

8 Bitwise XOR ^

9 Bitwise OR |

10 Logical AND &&

11 Logical OR ||

12 Assignment :=

!<expression>

<name>

<name> (<expressions>)

Scoping Rules
Variables, local or global; and arguments have lexical scoping in Cardinal. Cardinal does not allow for name

collisions between variables (e.g., local variables or arguments cannot have the same name as global

variables, or duplicate names among themselves). Different variables in the same scope with the same name

are not allowed. Different functions with the same name are not allowed. Functions with the same name as

global variables are allowed.

Intrinsic Functions
The following functions should be available to all Cardinal programs. Attempting to define a function with

the same name results in a compilation error:

• exit void (int) – exits the program with the return code provided by the argument

• print_int void (int) – prints the integer to the screen

• print_string void (string) – prints the string to the screen

Static variables
Functions in Cardinal may define static variables, which are local variables that keep the value between

function calls. For instance, the following Cardinal program prints 473474475:

fun f void () {

 static int i := 473;

 printint(i);

 i := i + 1;

}

f();

f();

f();

return 0;

Templating documents
Cardinal is a templating language that can appear in the middle of documents with other contents. A

program in cardinal simply outputs all the document contents outside of the cardinal start and end tags.

The document can appear anywhere, including in the middle of a Cardinal program. In this case, Cardinal

simply outputs the document contents any time it would execute the line. For instance, the following

program:

This is a document with a cardinal program in the middle!

Let’s execute some code:

<?cardinal?>

repeat (5) {

<?/cardinal?>

 This line should appear 5 times.

<?cardinal?>

}

<?/cardinal?>

And this is the end of the document!

Should result in the output:

This is a document with a cardinal program in the middle!

Let’s execute some code:

 This line should appear 5 times.

 This line should appear 5 times.

 This line should appear 5 times.

 This line should appear 5 times.

 This line should appear 5 times.

And this is the end of the document!

