
ASSIGNMENT 5

CS 473: Compiler Design / Fall 2025

Description
In this assignment, your compiler will take the list of IRs from the previous assignment and us it to generate

MIPS assembly code that can be executed by a simulator. Your submission will abstract the MIPS

architecture as a simple stack-machine, similar to the IR used in class and in the previous assignments. You

should use the lexical parser that you implemented in Assignment 1, the syntactic parser that you

implemented for Assignment 2, the AST and semantic analysis that you implemented for Assignment 3, and

the translation from AST to IR that you implemented for Assignment 4.

The Cardinal Language
The Cardinal language is defined in a separate document.

MIPS as a stack machine
We saw in class how to use a stack machine as a very simple model that can execute code. You should treat

MIPS as a stack machine:

• Decide on two registers to use when compiling each expression (for instance, $v0 and $v1). The

contents of these registers are not saved, so you can only rely on their contents immediately after

writing them. For instance, the following code will result in undefined contents of register $v0:

emitInstruction("li $v0,473");

mips_astExp(…); // This call may overwrite the contents of register $v0

// Contents of register $v0 are now undefined and cannot be used

Instead, organize your code differently:

mips_astExp(…); // This call may overwrite the contents of register $v0

emitInstruction("li $v0,473");

// Contents of register $v0 are guaranteed to be 473

• Familiarize yourself with how to use the stack in MIPS, which was covered in class.

• Ensure that each expression takes its operands from the stack and leaves the result on the stack.

• Ensure that statements leave the stack unmodified, consuming all values that are pushed.

Intrinsic functions and system-calls
You should implement compiler intrinsics by calling the appropriate system call provided by the MIPS

simulator: https://hwlabnitc.github.io/MIPS/mips_syscalls&tutorial#system-calls

Structure of the output
The autograder generates file out.mips as the result of compiling each Cardinal source code file. You

should inspect this file as you develop your solution to ensure the correctness of the generated MIPS

assembly.

Function Implementation strategy
This assignment requires your compiler to support function definition and invocation. Here is a way to add

incremental support:

1. Add support for leaf functions (i.e., functions that do not call any other functions but may call

intrinsics) that return an integer and take no arguments.

a. Use the MIPS calling convention seen in class to jump to the start of the function.

b. On return, make sure you push the return value before jumping back to the callee.

c. When compiling a function call, you can expect the return value on top of the stack after the

function returns

2. Add support for non-leaf recursive functions that take any number of arguments using stack frames.

Start as simple as possible and add complexity as needed.

a. Decide on the format of your stack frame and write it down, you’ll be using it throughout

this process.

b. Start by supporting non-leaf functions that take zero arguments by saving the return address

on the stack before each function call, and jumping back to it when returning

c. Add support to a frame-pointer inside your stack-frame, so you can use it for the next steps

d. Add support to function arguments to the stack-frame.

i. Push all arguments when calling a function

ii. Inside a function, access arguments via the argument index (computed for

Assignment 3) and the frame-pointer. For instance, argument N may be found on

($fp+N)*4. Refer back to your design for the stack-frame to figure out your formula.

e. When returning:

i. Compute the return value of the function. Do this first so that the return value can

still access any arguments.

ii. Save the return value in a register

iii. Save the return address in another register

https://hwlabnitc.github.io/MIPS/mips_syscalls&tutorial#system-calls

iv. Reset the stack-pointer and frame-pointer so you “pop” all values from the stack,

and restore the stack to how it looked before the function was called. Be careful

not to overwrite the return value and return address.

v. Push the saved return value back to the stack

vi. Jump back to the return address.

3. Add support for local variables

a. Reserve extra space in the stack-frame for all local variables at the start of each function

b. Then, before executing any function code, initialize each local variable

c. You can access local variables just as if they are extra arguments, using the indexes you

computed during Assignment 3.

Extending Cardinal
Assignment 5 requires you to add an extension to Cardinal, and then upload a short video explaining your

extension. Below you have a list of possible extensions.

Minor extensions
• Add a for loop to Cardinal that behaves like C

o for(<init>, <step>, <cond>) { <body> }

• Executes <init> before entering the for

• Executes <body>

• At the end of <body>, executes <step>

• After executing <step>, executes <cond> and repeats Steps 2-4 once if <cond> is not zero

• Exits the loop if <cond> is zero

• Ternary operator as an expression, like in C: <cond> ? <then> : <else>

• Unlike the if statement, this is an expression

• Evaluate the condition first

• If true, the whole expression evaluates to the result of <then>

• If false, the whole expression evaluates to the results of <else>

• Add a variable that contains how many iterations are left on repeat:

• E.g., repeat(10) { print_int(nnn); }

▪ Prints 10987654321

• Using the variable outside of a repeat results in a symbol error

• Defining a variable with the same name? Up to you. May be an error, or may shadow the

repeat variable.

• Add more statements and expressions. You have to support ALL of these:

• Binary statements: +=, -=, *=, /=, |=, &=, ^=

• Unary expression negation (flips all the bits): ~

• Binary shift expressions: <<, >>

▪ You can modify the IR as needed to support binary shifts

• Minor extensions are graded as follows using videos of the given length:

• Show and explain the changes in lexer and parser rules, show that your lexer and parser

work as expected with positive and negative examples

• Show and explain the changes in the semantic analysis, show that your semantic analysis

works as expected with positive and negative examples

• Show and explain the changes in the AST to IR translation and IR tree to list

• Show that your extension works as expected with end-to-end positive examples (e.g., a

correct for loop that iterates the expected number of times)

Optimizations
Instead of extending Cardinal, you can perform some type of program optimization. Files optimize.h and

optimize.c contain entry-points for optimizations at different levels (AST, Tree IR, List IR, List IR with explicit

PUSH/POP operations.

For instance, you can write an optimization that removes sequences of PUSH-POP to the same register.

Major extensions
You can suggest a major extension to the Cardinal compiler instead of performing this assignment. Please

reach out to Prof. Pina about this opportunity. Here are some ideas:

• Write a debugger for the AVES IR that allows to visualize the stack before and after each individual

IR. You can write such a debugger as a JavaScript webpage.

• Reimplement a portion of the Cardinal compiler in a different language (e.g., Rust, Java, Python, etc.)

o This includes lexer, parser, semantic analysis, IR translation, and MIPS code emission

o You don’t have to implement the whole specification for Cardinal

• Reimplement the front end to target LLVM IR instead of AVES IR

Entry Point
You will reuse files lexer.lex , parser.y , semantic_analysis_(symbols|types).[ch] and

frame.[ch], transform.c, ast_to_ir.c, and ir_tree_to_list.c from Assignment 4.

You will modify file ir_list_to_mips.c by implementing an IR traversal that emits MIPS code, thus

compiling programs in Cardinal. You can modify files optimize.c and ir_pushpop.c as needed.

Due Date and Resubmission Policy
This assignment has 2 due dates, one for each half of the tests. The extension is due on the second date.

First Due Date
The first half of the assignment is due on November 22nd 2025 (Saturday) at 5pm CST. There is no late policy.

The code and date used for your submission is defined by the last commit to your Git repository.

Second Due Date
The second half of the assignment is due on December 6th 2025 (Saturday) at 5pm CST. There is no late

policy.

The code and date used for your submission is defined by the last commit to your Git repository.

Resubmissions
Each half of the assignment is resubmitted in separate. To resubmit this assignment, your original grade (as

defined by the autograder) should be equal to or higher than 30% for undergraduate students. You can

resubmit the first half of your assignment until November 29th 2025 at 5pm CST and the second half until

December 13th 2025 at 5pm CST. Together with your resubmission, you will have to submit a written

description of what you changed from the original submission (on Gradescope).

Bonus Points
This assignment has a total of 30% bonus points.

You can earn 10% extra points by using Piazza as described in the syllabus. Your posts should be public,

tagged with the assignment5 label, and non-anonymous to the instructors to count towards the bonus.

You can claim bonus points through a Gradescope quiz.

You can earn 10% extra points by fixing all memory leaks in your program. Each passing test without memory

leaks is worth 1% bonus points.

You can earn 10% extra points by passing all the tests by the first due date. Each passing tests 6 through 10

by the first due date is worth a 2% bonus.

Submission and Grading
This assignment is submitted through Github, and has an automatic grade component of 80%. You can check

your current grade at any point by submitting your code and checking the autograder. The automatic grade

is determined by 10 tests, that will check if your submission outputs the expected result. Each test in the

first half is worth 10%, each test in the second half is worth 6%.

This assignment also has a 20% component for your extension of Cardinal. You will have to submit a 5

minute video screencast as explained above to claim points for your extension.

You can record such a video using Zoom, which you may already have installed to attend lectures

remotely. Simply start a meeting (without any other participants), share your screen, and start

recording. Note that Zoom requires some time to process your video after you record it, so plan

accordingly. Extension requests to upload videos after the due time and date because Zoom is still

processing them will be denied.

Instructors will stop watching videos at the 5 minute timestamp (nothing past that point in the video

will be graded). This video should be a screencast of your IDE open on the code submitted, and you

should highlight the code. Note that longer videos are not better videos, and you should record a video

as short as needed to show all the expressions and answer the questions above. Attempts to speed up

the video playback result in a 0% grade for the extension.

Graduate students
There is no extra requirement for graduate students. Graduate students are encouraged to add support for

arrays as their extension, but they can add any other extension they choose.

Errors and Omissions
If you find an error or an omission, please post it on Piazza as soon as you find it.

Hardcoding and Academic Integrity
Any hardcoding will result in a 0% grade. Hardcoding is when you submit code that detects which test is

being run, and simply outputs the expected result. For instance, detecting that test 22 is running, and

replacing the usual execution of your submission with printf(“expected result”).

The academic integrity policy described in the syllabus applies to this assignment. You are responsible for

writing all the code that you submit. We will use an automatic tool that detects plagiarism on all submitted

code, and we will investigate all instances where plagiarism is more than likely.

Please refer to the syllabus for the full academic integrity policy.

