ASSIGNMENT 4

CS 473: Compiler Design / Fall 2025

Description

In this assignment, your compiler will traverse the AST from previous assignments and translate it to two
Intermediate Representation (IR) forms for a stack machine: First a tree, and then a list. Your submission will
pass the list IR to the provided interpreter, which can print and execute your programs. You should use the
lexical parser that you implemented in Assignment 1, the syntactic parser that you implemented for

Assignment 2, and the AST and semantic analysis that you implemented for Assignment 3.

The Cardinal Language

The Cardinal language is defined in a separate document.

Aves Intermediate Representation

The AVES Intermediate Representation is defined in a separate document.

Tree IR

Each IR node has three pointers you can use to translate the AST into a tree form: tree ir 1,
tree ir 2,and tree ir 3. Forinstance, when translating an AST that adds two numbers together, you

canuse tree ir 1fortheleft-handsideand tree ir 2 for the right-hand side:

AST BinOpNode (plus_op, <left>, <right>);

Tree IR ir node * ir = Ops(ir_add);
ir->tree ir 1 /*translate AST <left> to IR */
ir->tree ir 1 /*translate AST <right> to IR */




List IR

Each IR node has a next pointer that you can use to turn a tree representation into a list representation.
The interpreter provided will expect a list representation. You can turn the example above into a list

representation as follows

List IR ir node * left = /*turn ir->tree ir 1 into a list*/

ir node * right = /*turn ir->tree ir 2 into a list*/

// We want to generate the list [left] -> [right] -> Op(ir_add)
// [left] and [right] may be more than one IR instruction
findLast (left) ->next = right; // Generates [left] -> [right]
findLast (right)->next = ir; // Generates [right] -> Op(ir add)
// We return the list we created above

// starting with the first instruction on the left-hand side
return left;

Entry Point

You will reuse files lexer.lex,parser.y , semantic analysis (symbols|types) . [ch],and

frame. [ch] from Assignment 3.

You will modify file ast to ir.c with atraversal of the AST that transforms it into a Tree IR. You will
modify file ir tree to list.c withatraversal of the Tree IR that transforms it into a List IR. You can

also modify files transform.cand main. c as you see fit.

You may need to modify your parser and semantic analyses from previous assignments.

Due Date and Resubmission Policy

This assignment has 2 due dates, one for each half of the tests.

First Due Date
The first half of the assignment is due on November 1%t 2025 (Saturday) at 5pm CST. There is no late policy.

The code and date used for your submission is defined by the last commit to your Git repository.

Second Due Date
The second half of the assignment is due on November 8" 2025 (Saturday) at 5pm CST. There is no late
policy.

The code and date used for your submission is defined by the last commit to your Git repository.



Resubmissions
Each half of the assignment is resubmitted in separate. Fe+resubmitthisassighmentyouroriginalgrade{as

atestudents: You can

resubmit the first half of your assighment until November 8t 2025 at 5pm CST and the second half until
November 15t 2025 at 5pm CST. Together with your resubmission, you will have to submit a written

description of what you changed from the original submission (on Gradescope).

Note that the first resubmission and the second submission due date are the same!

Bonus Points
This assignment has a total of 30% bonus points.
You can earn 10% extra points by using Piazza as described in the syllabus. Your posts should be public,

tagged with the assignment4 label, and non-anonymous to the instructors to count towards the bonus.

You can claim bonus points through a Gradescope quiz.

You can earn 10% extra points by fixing all memory leaks in your program. Each passing test without memory
leaks is worth 1% bonus points.

You can earn 10% extra points by passing all the tests by the first due date. Each passing tests 6 through 10
by the first due date is worth a 2% bonus.

Submission and Grading

This assignment is submitted through Github, and has an automatic grade component of 100%. You can
check your current grade at any point by submitting your code and checking the autograder. The automatic
grade is determined by 10 tests, that will check if your submission outputs the expected result. Each test is
worth 10%.

Graduate students

On top of the behavior described above, graduate students have to add support for reading/writing arrays .

Each regular test is only worth 8% for graduate students. The remaining 20% will be graded by providing a 5

minute video showing how you added support for arrays and answering the 4 following questions:

1. How does your compiler reserve room for arrays as global variables?

2. How does your compiler read from arrays? Show the execution of a compiled program that reads
from arrays.

3. How does your compiler write to arrays? Show the execution of a compiled program that writes to
arrays.

4. Show one limitation of your array implementation.



You can record such a video using Zoom, which you may already have installed to attend lectures
remotely. Simply start a meeting (without any other participants), share your screen, and start
recording. Note that Zoom requires some time to process your video after you record it, so plan
accordingly. Extension requests to upload videos after the due time and date because Zoom is still

processing them will be denied.

The maximum length for the video is 5 minutes, instructors will stop watching at the 5 minute mark
(nothing past that point in the video will be graded). This video should be a screencast of your IDE open

on the code submitted, and you should highlight the code. Note that longer videos are not better videos,

and you should record a video as short as needed to show all the expressions and answer the guestions

above.

The final grade for the assignment will be the grade of the original submission, for assignments without a
resubmission; or the average between the original grade and the resubmission grade, for assignments with a
resubmission. The grade of the original submission includes any bonus points.

Errors and Omissions

If you find an error or an omission, please post it on Piazza as soon as you find it.

Hardcoding and Academic Integrity

Any hardcoding will result in a 0% grade. Hardcoding is when you submit code that detects which test is
being run, and simply outputs the expected result. For instance, detecting that test 22 is running, and

replacing the usual execution of your submission with printf (“expected result”).

The academic integrity policy described in the syllabus applies to this assignment. You are responsible for
writing all the code that you submit. We will use an automatic tool that detects plagiarism on all submitted
code, and we will investigate all instances where plagiarism is more than likely.

Please refer to the syllabus for the full academic integrity policy.



