
ASSIGNMENT 4

CS 473: Compiler Design / Fall 2025

Description
In this assignment, your compiler will traverse the AST from previous assignments and translate it to two

Intermediate Representation (IR) forms for a stack machine: First a tree, and then a list. Your submission will

pass the list IR to the provided interpreter, which can print and execute your programs. You should use the

lexical parser that you implemented in Assignment 1, the syntactic parser that you implemented for

Assignment 2, and the AST and semantic analysis that you implemented for Assignment 3.

The Cardinal Language
The Cardinal language is defined in a separate document.

Aves Intermediate Representation
The AVES Intermediate Representation is defined in a separate document.

Tree IR
Each IR node has three pointers you can use to translate the AST into a tree form: tree_ir_1,

tree_ir_2, and tree_ir_3. For instance, when translating an AST that adds two numbers together, you

can use tree_ir_1for the left-hand side and tree_ir_2 for the right-hand side:

AST BinOpNode(plus_op, <left>, <right>);

Tree IR ir_node * ir = Ops(ir_add);

ir->tree_ir_1 = /*translate AST <left> to IR */

ir->tree_ir_1 = /*translate AST <right> to IR */

List IR
Each IR node has a next pointer that you can use to turn a tree representation into a list representation.

The interpreter provided will expect a list representation. You can turn the example above into a list

representation as follows

List IR ir_node * left = /*turn ir->tree_ir_1 into a list*/

ir_node * right = /*turn ir->tree_ir_2 into a list*/

// We want to generate the list [left] -> [right] -> Op(ir_add)

// [left] and [right] may be more than one IR instruction

findLast(left)->next = right; // Generates [left] -> [right]

findLast(right)->next = ir; // Generates [right] -> Op(ir_add)

// We return the list we created above

// starting with the first instruction on the left-hand side

return left;

Entry Point
You will reuse files lexer.lex , parser.y , semantic_analysis_(symbols|types).[ch], and

frame.[ch] from Assignment 3.

You will modify file ast_to_ir.c with a traversal of the AST that transforms it into a Tree IR. You will

modify file ir_tree_to_list.c with a traversal of the Tree IR that transforms it into a List IR. You can

also modify files transform.c and main.c as you see fit.

You may need to modify your parser and semantic analyses from previous assignments.

Due Date and Resubmission Policy
This assignment has 2 due dates, one for each half of the tests.

First Due Date
The first half of the assignment is due on November 1st 2025 (Saturday) at 5pm CST. There is no late policy.

The code and date used for your submission is defined by the last commit to your Git repository.

Second Due Date
The second half of the assignment is due on November 8th 2025 (Saturday) at 5pm CST. There is no late

policy.

The code and date used for your submission is defined by the last commit to your Git repository.

Resubmissions
Each half of the assignment is resubmitted in separate. To resubmit this assignment, your original grade (as

defined by the autograder) should be equal to or higher than 30% for undergraduate students. You can

resubmit the first half of your assignment until November 8th 2025 at 5pm CST and the second half until

November 15th 2025 at 5pm CST. Together with your resubmission, you will have to submit a written

description of what you changed from the original submission (on Gradescope).

Note that the first resubmission and the second submission due date are the same!

Bonus Points
This assignment has a total of 30% bonus points.

You can earn 10% extra points by using Piazza as described in the syllabus. Your posts should be public,

tagged with the assignment4 label, and non-anonymous to the instructors to count towards the bonus.

You can claim bonus points through a Gradescope quiz.

You can earn 10% extra points by fixing all memory leaks in your program. Each passing test without memory

leaks is worth 1% bonus points.

You can earn 10% extra points by passing all the tests by the first due date. Each passing tests 6 through 10

by the first due date is worth a 2% bonus.

Submission and Grading
This assignment is submitted through Github, and has an automatic grade component of 100%. You can

check your current grade at any point by submitting your code and checking the autograder. The automatic

grade is determined by 10 tests, that will check if your submission outputs the expected result. Each test is

worth 10%.

Graduate students
On top of the behavior described above, graduate students have to add support for reading/writing arrays .

Each regular test is only worth 8% for graduate students. The remaining 20% will be graded by providing a 5

minute video showing how you added support for arrays and answering the 4 following questions:

1. How does your compiler reserve room for arrays as global variables?

2. How does your compiler read from arrays? Show the execution of a compiled program that reads

from arrays.

3. How does your compiler write to arrays? Show the execution of a compiled program that writes to

arrays.

4. Show one limitation of your array implementation.

You can record such a video using Zoom, which you may already have installed to attend lectures

remotely. Simply start a meeting (without any other participants), share your screen, and start

recording. Note that Zoom requires some time to process your video after you record it, so plan

accordingly. Extension requests to upload videos after the due time and date because Zoom is still

processing them will be denied.

The maximum length for the video is 5 minutes, instructors will stop watching at the 5 minute mark

(nothing past that point in the video will be graded). This video should be a screencast of your IDE open

on the code submitted, and you should highlight the code. Note that longer videos are not better videos,

and you should record a video as short as needed to show all the expressions and answer the questions

above.

The final grade for the assignment will be the grade of the original submission, for assignments without a

resubmission; or the average between the original grade and the resubmission grade, for assignments with a

resubmission. The grade of the original submission includes any bonus points.

Errors and Omissions
If you find an error or an omission, please post it on Piazza as soon as you find it.

Hardcoding and Academic Integrity
Any hardcoding will result in a 0% grade. Hardcoding is when you submit code that detects which test is

being run, and simply outputs the expected result. For instance, detecting that test 22 is running, and

replacing the usual execution of your submission with printf(“expected result”).

The academic integrity policy described in the syllabus applies to this assignment. You are responsible for

writing all the code that you submit. We will use an automatic tool that detects plagiarism on all submitted

code, and we will investigate all instances where plagiarism is more than likely.

Please refer to the syllabus for the full academic integrity policy.

