
ASSIGNMENT 3

CS 473: Compiler Design / Fall 2025

Description
In this assignment, you will build the Abstract Syntax Tree (AST) and perform semantic analysis for the

language Cardinal. The language is described in a separate document. Your analysis should reject invalid

programs with type errors, that use variables/functions not defined, or that call functions with the incorrect

number of arguments. You should use the lexical parser that you implemented in Assignment 1 and the

syntactic parser that you implemented for Assignment 2.

The Cardinal Language
The Cardinal language is defined in a separate document.

Building and Using the AST
You should edit the semantic rules for the parser so they build the AST. The provided files ast.h and

ast.c define the structure of the AST, with some of the required nodes and data-structures to represent

the program. You should add any remaining nodes to the AST as you see fit.

The rest of the assignment performs several traversals of the AST that you build during parsing, as described

below:

Symbol Resolution
You must implement the first traversal in files semantic_analysis_symbols.h and

semantic_analysis_symbols.c. Your submission should populate a global symbol table with global

variables, a function table with all the functions, and a local symbol table for each function with local

variables and arguments. Then, your submission should check that all variables and functions used were

defined.

Type Checking
You must implement the second traversal in files semantic_analysis_types.h and

semantic_analysis_types.c. Make sure to collect typing information during symbol resolution so

you can use that information now. This traversal should ensure that all types match: unary and binary

operations are performed on integers, variable assignment matches the variable type, and function calls have

matching formal and actual argument types.

Computing Function Frames
You must implement the third traversal in files frames.c and frames.h. This traversal should compute

the function frames. For each function, the frame contains a table for the types of the arguments and local

variables, another table that maps each argument/local variable to an integer (described below), and the

return type of the function.

Your submission should assign numbers to arguments as follows. The first argument is number 0. The

second argument is number 1, and so on.

Your submission should assign numbers to local variables as follows. The first local variable has the number

of the last argument plus 1. The second local variable has the number of the first local variable plus one, and

so on. For instance, the following function: f(int i, int j) { int local1; int local2; …

} has the frame:

0. i

1. j

2. local1

3. local2

Note that the data-structure that keeps the frames also has tables for the type of each argument and local

variable. If you fill these tables early (i.e., during symbol resolution), you can then use it during type-

checking.

Printing Output
You must implement the fourth traversal on file printAst.c to print the results described in this

document.

Name and Type Errors
Your submission should terminate with error for programs with any of the following contents:

• Global variables with the same name, regardless of type

• Function arguments with the same name as existing global variables, regardless of type

• Function arguments with the same name on the same function, regardless of type

• Function arguments with the same name on different functions are not an error

• Local variables with the same name as existing global variables, regardless of type

• Local variables with the same name as function arguments for the same function, regardless of type

• Local variables with the same name on the same function, regardless of type

• Local variables with the same name on different functions are not an error

• Function with the same name, regardless of signature

• Functions and variables with the same name are not an error

• Inconsistent use of types in expressions and statements (e.g., assigning a string to an int variable, or

using a string as the condition for an if statement)

For programs that contain name and type errors, your submission should exit with the return code 73. You

can print an error message describing what is wrong with the input program, but that is optional.

Note that crashing on a program that should be rejected does not count as rejecting that program. Your

submission should not crash or exhibit any memory errors for any possible input programs.

Format of the output
The printer in file printAst.c should generate the following output:

• Variable declaration: Variable declared "<name>" type <type>

• Function declaration: Function declared "<name>" returns <type>

o Arguments in declaration: Argument "<name>" type <type> position <N>

o Local variables in declaration: Local variable "<name>" type <type>

position <N>

• Variable read: Variable read "<name>" type <type>

• Argument/Local variable read: Argument/local read "<name>" type <type> frame

position <N>

• Variable written: Variable written "<name>" type <type>

• Argument/Local variable written: Argument/local written "<name>" type <type>

frame position <N>

• Function called: Function called "<name>" returns <type>

Besides printing information about the variables and functions used and declare, your submission should also

print an integer that denotes the deepest level of the AST.

For instance, for the following Cardinal program (color coded for clearness):

For instance, for the following
Cardinal program:

The expected output is:

var s string := "";

fun f string () {

 var i int := 0+0+0+0;

 return s;

}

fun f2 int (a1 int, a2 string) {

 a1 := a1;

 a2 := s;

 return a1;

}

fun f3 int (i string) {

 return f2(473,i);

}

return f2(0,s);

Variable declared "s" type string

Function declared "f" returns string

 Local variable "i" type int position 0

Argument/local read "s" type int frame position 0

Function declared "f2" returns int

 Argument "a1" type int position 0

 Argument "a2" type string position 1

Argument/local read "a1" type int frame position 0

Argument/local written "a1" type int frame position 0

Variable read "s" type string

Argument/local written "a2" type string frame position 1

Argument/local read "a1" type int frame position 0

Function declared "f3" returns int

 Argument "i" type string position 0

Argument/local read "i" type string

Function called "f2" returns int

Variable read "s" type string

Function called "f2" returns int

3

Entry Point
You will modify file lexer.lex with all the rules for the lexer from Assignment 1.

You will modify file parser.y with all the rules from Assignment 2, and modify the semantic actions to

create the AST as described in this document.

You will modify files semantic_analysis_(symbols|types).[ch] , frame.[ch],

print_ast.[ch], and ast.[ch] with code to define the AST and perform the right actions when

traversing the AST.

Due Date and Resubmission Policy
This assignment has 2 due dates, one for each half of the tests.

First Due Date
The first half of the assignment is due on October 11th 2025 (Saturday) at 5pm CST. There is no late policy.

The code and date used for your submission is defined by the last commit to your Git repository.

Second Due Date
The second half of the assignment is due on October 18th 2025 (Saturday) at 5pm CST. There is no late

policy.

The code and date used for your submission is defined by the last commit to your Git repository.

Resubmissions
Each half of the assignment is resubmitted in separate. To resubmit this assignment, your original grade (as

defined by the autograder) should be equal to or higher than 30% for undergraduate students. You can

resubmit the first half of your assignment until October 18th 2025 at 5pm CST and the second half until

October 25th 2025 at 5pm CST. Together with your resubmission, you will have to submit a written

description of what you changed from the original submission (on Gradescope).

Note that the first resubmission and the second submission due date are the same!

Bonus Points
This assignment has a total of 30% bonus points.

You can earn 10% extra points by using Piazza as described in the syllabus. Your posts should be public,

tagged with the assignment3 label, and non-anonymous to the instructors to count towards the bonus.

You can claim bonus points through a Gradescope quiz.

You can earn 10% extra points by fixing all memory leaks in your program. Each passing test without memory

leaks is worth 1% bonus points.

You can earn 10% extra points by passing all the tests by the first due date. Each passing tests 6 through 10

by the first due date is worth a 2% bonus.

Submission and Grading
This assignment is submitted through Github, and has an automatic grade component of 100%. You can

check your current grade at any point by submitting your code and checking the autograder. The automatic

grade is determined by 10 tests, that will check if your submission outputs the expected result. Each test is

worth 10%.

Graduate students
On top of the behavior described above, graduate students have to implement support for reading/writing

arrays . You can add rules to your grammar to accept variable declarations as arrays without initialization,

and functions that accept arrays as arguments. The graduate portion is due on the second due date.

Each regular test is only worth 8% for graduate students. The remaining 20% will be graded as described

below.

1. Does your submission support symbol resolution on expressions that read from arrays? (e.g, arr[n],

arr[function(n,m))]

2. Does your submission support type checking on expressions that read from arrays? (e. arr[n+10])

3. Does your submission support symbol resolution on expressions that write to arrays? (e.g, arr[n] :=

10; , arr[function(n,m))] := arr[m];)

4. Does your submission support type checking on expressions that write to arrays? (e.g, arr[n] := 10; ,

arr[function(n,m))] := arr[m];)

You can record such a video using Zoom, which you may already have installed to attend lectures

remotely. Simply start a meeting (without any other participants), share your screen, and start

recording. Note that Zoom requires some time to process your video after you record it, so plan

accordingly. Extension requests to upload videos after the due time and date because Zoom is still

processing them will be denied.

The maximum length for the video is 5 minutes, instructors will stop watching at the 5 minute mark

(nothing past that point in the video will be graded). This video should be a screencast of your IDE open

on the code submitted, and you should highlight the code. Note that longer videos are not better videos,

and you should record a video as short as needed to show all the expressions and answer the questions

above.

The final grade for the assignment will be the grade of the original submission, for assignments without a

resubmission; or the average between the original grade and the resubmission grade, for assignments with a

resubmission. The grade of the original submission includes any bonus points.

Errors and Omissions
If you find an error or an omission, please post it on Piazza as soon as you find it.

Hardcoding and Academic Integrity
Any hardcoding will result in a 0% grade. Hardcoding is when you submit code that detects which test is

being run, and simply outputs the expected result. For instance, detecting that test 22 is running, and

replacing the usual execution of your submission with printf(“expected result”).

The academic integrity policy described in the syllabus applies to this assignment. You are responsible for

writing all the code that you submit. We will use an automatic tool that detects plagiarism on all submitted

code, and we will investigate all instances where plagiarism is more than likely.

Please refer to the syllabus for the full academic integrity policy.

