
ASSIGNMENT 4

CS 473: Compiler Design / Fall 2022

Description
In this assignment, your compiler will traverse the AST from previous assignments and generate MIPS

assembly code that can be executed by a simulator. Your submission will abstract the MIPS architecture as a

simple stack-machine, as we saw in class. You should use the lexical parser that you implemented in

Assignment 1, the syntactic parser that you implemented for Assignment 2, and the AST and semantic

analysis that you implemented for Assignment 3.

The Albatross Language
The Albatross language is defined in a separate document.

MIPS as a stack machine
We saw in class how to use a stack machine as a very simple model that can execute code. You should treat

MIPS as a stack machine:

• Decide on two registers to use when compiling each expression (for instance, $v0 and $v1). The

contents of these registers are not saved, so you can only rely on their contents immediately after

writing them. For instance, the following code will result in undefined contents of register $v0:

emitInstruction("li $v0,473");

mips_astExp(…); // This call may overwrite the contents of register $v0

// Contents of register $v0 are now undefined and cannot be used

Instead, organize your code differently:

mips_astExp(…); // This call may overwrite the contents of register $v0

emitInstruction("li $v0,473");

// Contents of register $v0 are guaranteed to be 473

• Implement functions push0 and push1 to push each register to the top of the stack.

• Implement functions pop0 and pop1 to pop the top of the stack to each register.

• Ensure that each expression takes its operands from the stack and leaves the result on the stack.

• Ensure that statements leave the stack unmodified, consuming any values that are pushed.

Intrinsic functions and system-calls
The AST from Assignment 3 now has two new nodes for intrinsic function calls, both as statements and

expressions. You should implement these by calling the appropriate system call provided by the MIPS

simulator: http://courses.missouristate.edu/kenvollmar/mars/Help/SyscallHelp.html

Structure of the output
The autograder generates file out.mips as the result of compiling each Albatross source code file. You

should inspect this file as you develop your solution to ensure the correctness of the generated MIPS

assembly. You are encouraged to follow the structure below:

Define all variables here in a .data section

You may have to introduce variables not in the original program

(e.g., repeat loops, string literals)

 .data
i: .word 0 # defines i as an integer variable

s: .asciiz "CS473" # defines variable s as a zero-terminated string

.text

Global variable initialization code goes here

(e.g., var i int := 400 + 73;)

li $v0, 400

li $v1, 73

add $v0,$v0,$v1

sw $v0, i

jump to the top-level code with a label

j _main

functions go here

f1:

…

f2:

…

top-level code starts here

_main:

…

http://courses.missouristate.edu/kenvollmar/mars/Help/SyscallHelp.html

Function Implementation strategy
This assignment requires your compiler to support function definition and invocation. Here is a way to add

incremental support:

1. Add support for leaf functions (i.e., functions that do not call any other functions but may call

intrinsics) that return an integer and take no arguments.

a. Use the MIPS calling convention seen in class to jump to the start of the function.

b. On return, make sure you push the return value before jumping back to the callee.

c. When compiling a function call, you can expect the return value on top of the stack after the

function returns

2. Add support for different return types on leaf functions: string and void.

3. Add support for passing up to 4 arguments on leaf functions. You can use the MIPS calling

convention seen in class for that (i.e., using registers a0-a4). You don’t need to save any register.

4. Add support for non-leaf recursive functions that take any number of arguments using stack frames

a. Decide on the format of your stack frame and write it down, you’ll be using it throughout

this process.

b. Start by supporting non-leaf functions that take zero arguments by saving the return address

on the stack before each function call, and jumping back to it when returning

c. Add support to a frame-pointer inside your stack-frame, so you can use it for the next steps

d. Add support to function arguments to the stack-frame.

i. Push all arguments when calling a function

ii. Inside a function, access arguments via the argument index (computed for

Assignment 3) and the frame-pointer. For instance, argument N may be found on

($fp+N)*4. Refer back to your design for the stack-frame to figure out your formula.

e. When returning:

i. Compute the return value of the function. Do this first so that the return value can

still access any arguments.

ii. Save the return value in a register

iii. Save the return address in another register

iv. Reset the stack-pointer and frame-pointer so you “pop” all values from the stack,

and restore the stack to how it looked before the function was called. Be careful

not to overwrite the return value and return address.

v. Push the saved return value back to the stack

vi. Jump back to the return address.

5. (bonus) Add support for local variables

a. Reserve extra space in the stack-frame for each local variable

b. Before starting the function, execute the initialization of each local variable

c. You can access local variables just as if they are extra arguments, using the indexes you

computed during Assignment 3.

Entry Point
You will reuse files lexer.lex , parser.y , semantic_analysis_(symbols|types).[ch] and

frame.[ch] from Assignment 3.

You will modify file transform.c with any code transformations your compiler requires, and file mips_ast.c by

implementing an AST traversal that emits MIPS code, thus compiling programs in Albatross.

You may need to modify your semantic analysis to add the Albatross intrinsics as functions.

Due Date and Resubmission Policy
This assignment is due on November 12 2022 (Saturday) at 5pm CST. There is no late policy.

The code and date used for your submission is defined by the last commit to your Git repository.

To resubmit this assignment, your original grade (as defined by the autograder) should be equal to or higher

than 30% for undergraduate students. You can resubmit your assignment until November 19 2022 (following

Saturday) at 5pm CST. Together with your resubmission, you will have to submit a written description of

what you changed from the original submission (on Gradescope).

Bonus Points
This assignment has a total of 10% bonus points, which you can earn by using Piazza as described in the

syllabus. Your posts should be public, tagged with the assignment4 label, and non-anonymous to the

instructors to count towards the bonus. You can claim bonus points through a Gradescope quiz.

There is one extra test that allows you to implement support for local variables for an extra bonus of 10%.

Submission and Grading
This assignment is submitted through Github, and has an automatic grade component of 150%. You can

check your current grade at any point by submitting your code and checking the autograder. The automatic

grade is determined by 15 tests, that will check if your submission outputs the expected result. Each test is

worth 10%.

Graduate students
There is no extra requirement for graduate students. You will add support for array the array operations

added in previous assignments in Assignment 5.

Errors and Omissions
If you find an error or an omission, please post it on Piazza as soon as you find it.

Hardcoding and Academic Integrity
Any hardcoding will result in a 0% grade. Hardcoding is when you submit code that detects which test is

being run, and simply outputs the expected result. For instance, detecting that test 22 is running, and

replacing the usual execution of your submission with printf(“expected result”).

The academic integrity policy described in the syllabus applies to this assignment. You are responsible for

writing all the code that you submit. We will use an automatic tool that detects plagiarism on all submitted

code, and we will investigate all instances where plagiarism is more than likely.

Please refer to the syllabus for the full academic integrity policy.

