
ASSIGNMENT 1

CS 473: Compiler Design / Fall 2022

Description
In this assignment, you will implement a lexical parser for the language Albatross. The language is described

below. Your lexical parser should reject programs with invalid tokens and print a list of tokens for programs

with only valid tokens.

The Albatross Language
The Albatross language is defined in a separate document.

Format of the output
Your lexical parser should output each token recognized in a separate line, with the following format:

<col> <line> <token> <info>

Where:

• col is a number denoting the column in the input file where the token starts

• line is a number denoting the line in the input file where the token starts

• token is a string denoting which type of token was recognized

• info is further information about some tokens

For instance, consider the following valid program in Albatross:

return 0;

The expected output for this program is:

1 1 RETURN

8 1 INT 0

9 1 SEMICOLON

Tokens
Your assignment should recognize the tokens as per the table below.

• Parenthesis, brackets, and curly brackets; with the token itself as the name.

• All operators for expressions, the name of the token is as follows:

Operator Name

+ PLUS

- MINUS

* MUL

/ DIV

% REM

== EQ

<> NE

< LT

<= LE

> GT

>= GE

! NOT

& BAND

| BOR

^ XOR

&& AND

|| OR

• All operators for statement keywords, the name of the token is the capitalized keyword (e.g.,

RETURN, IF, etc.)

• Types “int”, “string”, “char”, and “void”. The name of the token is TYPE and the info is a null-

terminated string representing the type (e.g., TYPE “int”)

• Variable names: alphanumeric sequences of characters that start with a letter. The name of the

token is NAME and the info is the name of the variable. If the variable is preceded by a type, then

the info should show the type token as well. Examples:

o “variable”

▪ 1 1 NAME variable

o “int variable”

▪ 1 1 TYPE int

▪ 4 1 NAME variable TYPE int

• Integer constants: sequences of numbers. The name of the token is INT and the info is the content

of the constant (e.g., INT 473)

• String constants: sequences of characters between double-quotes. The name of the token is STRING

and the info is the length of the string, followed by the contents of the string

o (e.g., STRING 6 CS 473)

• Octal constants: sequences of numbers in base 8 (i.e., between 0 and 7) that start with one leading

zero. The name of the token is INT and the info is the content of the constant in base 10 (e.g., the

octal 010 should result in the token INT 9)

• Hexadecimal constants: sequences of numbers in base 16 (i.e., numbers between 0 and 9 and

capital characters between A and F) starting with 0x. The name of the token is INT and the info is the

content of the constant in base 10 (e.g., the hex 0xA should result in the token INT 10)

Escape characters
Strings may have escape characters, which should be replaced by the character they represent. Albatross has

the following espace sequences:

• \n -> new line character

• \t -> tab character

• \” -> double-quote character

• \\ -> the escape character itself \

Separators in decimal constants
Albatross supports using the character “_” in decimal constants (i.e., base 10). For instance, 1_000_000

should result in the token INT 1000000. All characters “_” should be ignored when getting the value of a

decimal constant.

Return value and lexing errors
When lexing a file successfully, your submission should print the output described above and return with

code zero. When there is a lexing error, the output is left unspecified but your submission should exit with

code non-zero.

Useful library functions
You can use any functions which are part of the standard C library. In particular, functions in string.h are

useful for dealing with strings in C as arrays of characters, and string conversion functions in stdlib.h are

useful to turn strings that represent numbers into native integers. See the links below:

https://pubs.opengroup.org/onlinepubs/7908799/xsh/string.h.html

https://cplusplus.com/reference/cstdlib/

Entry Point
You will modify file lexer.lex with all the rules for the lexer to implement the behavior described above.

As we will see in class, you will have to modify several sections of the .lex file.

You will also modify file driver.c, adding tokens to the large switch-case statement and printing the

relevant information for each token as described above.

You will also modify the file tokens.h that will define all the tokens used by the lexer, and their format.

Due Date and Resubmission Policy
This assignment is due on September 10 2022 (Saturday) at 5pm CST. There is no late policy.

The code and date used for your submission is defined by the last commit to your Git repository.

To resubmit this assignment, your original grade (as defined by the autograder) should be equal to or higher

than 30% for undergraduate students. You can resubmit your assignment until September 17 2022

(following Saturday) at 5pm CST. Together with your resubmission, you will have to submit a written

description of what you changed from the original submission (on Gradescope).

Bonus Points
This assignment has a total of 10% bonus points, which you can earn by using Piazza as described in the

syllabus. Your posts should be public, tagged with the assignment1 label, and non-anonymous to the

instructors to count towards the bonus. You can claim bonus points through a Gradescope quiz.

Submission and Grading
This assignment is submitted through Github, and has an automatic grade component of 100%. You can

check your current grade at any point by submitting your code and checking the autograder. The automatic

grade is determined by 10 tests, that will check if your submission outputs the expected result. Each test is

worth 10%.

Graduate students
On top of the behavior described above, graduate students have to implement multi-line comments or multi-

line strings. Graduate students should pick a lexical construction to denote one of these and implement

them.

Each regular test is only worth 8% for graduate students. The remaining 20% will be graded as described

below.

This language extension will be graded via one video screen-cast (through Gradescope) that answers the

questions below by explaining how your code. You can record such a video without installing any software by

using the following website: https://screenapp.io/#/

1. What lexical form do multi-line comments or multi-line strings take in your language?

2. Which lex rules did you use?

3. Show one example of a successful program that uses multi-line comments or multi-line strings

4. Show one example of a program that contains lexing errors on the multi-line comment or multi-line

string

The maximum length for the video is 5 minutes, instructors will stop watching at the 5 minute mark

(nothing past that point in the video will be graded). This video should be a screencast of your IDE open

on the code submitted, and you should highlight the code. Note that longer videos are not better videos,

and you should record a video as short as needed to show all the expressions and answer the questions

above.

The final grade for the assignment will be the grade of the original submission, for assignments without a

resubmission; or the average between the original grade and the resubmission grade, for assignments with a

resubmission. The grade of the original submission includes any bonus points.

Errors and Omissions
If you find an error or an omission, please post it on Piazza as soon as you find it.

Hardcoding and Academic Integrity
Any hardcoding will result in a 0% grade. Hardcoding is when you submit code that detects which test is

being run, and simply outputs the expected result. For instance, detecting that test 22 is running, and

replacing the usual execution of your submission with printf(“expected result”).

The academic integrity policy described in the syllabus applies to this assignment. You are responsible for

writing all the code that you submit. We will use an automatic tool that detects plagiarism on all submitted

code, and we will investigate all instances where plagiarism is more than likely.

Please refer to the syllabus for the full academic integrity policy.

