
ASSIGNMENT 5

CS 454: Principles of Concurrent Programming / Spring 2022

Description
In this assignment, you will update your Assignment 1 management utility to track diagnostic test sampling

and distribution between a laboratory and many testing sites.

Changes between Assignment 5 and Assignment 1 are highlighted in this document.

Your submission should extend the following abstract class:

abstract class Lab {

 abstract TestingSite createTestingSite(int capacity);

 abstract DiagnosticTest createDiagnosticTests(int id);

 abstract boolean sampleDiagnosticTest(TestingSite ts, Set diagTests);

 abstract boolean positive(TestingSite ts, Set diagTests);

 abstract boolean negative(TestingSite ts, Set diagTests);

 abstract boolean invalid(TestingSite ts, Set diagTests);

 abstract boolean moveDiagnosticTests(TestingSite from, TestingSite to, Set movedTests);

 abstract Set getDiagnosticTests();

 abstract Set getDiagnosticTests(TestingSite ts);

 abstract List<Action< TestingSite>> audit(DiagnosticTest diagTest);

 abstract List<Action< DiagnosticTest>> audit(TestingSite ts);

}

Each operation (method) behaves as follows:

• createTestingSite: Creates a testing site that can store a number of samples taken for tests not yet

finished –

• createDiagnosticTest: Creates one test with a given . The is unique across the same .

• sampleDiagnosticTests: Takes a sample from patients for each and stores it in the

given .

o This operation either adds all the tests, if the site has enough capacity, or none.

o For instance, attempting to add two tests to a site that only has room for one should not

change the contents of the site.

o If all the tests are added to the site, this operation returns . If the site remains

unchanged, this operation returns .

• positive: Mark all the given provided as positive, which should be

present on the given .

o Similarly to sampleDiagnosticTests, this operation either marks all the tests or none.

o Trying to mark a test that is not in the current site results in failure of the whole operation

(i.e., no tests are marked as positive).

o If all the tests are marked, this operation returns . If any test cannot be marked,

then no tests are modified and this operation returns .

• negative: Similar to positive described above, but marks all tests as negative

• invalid: Similar to positive and negative described above, but marks all tests as invalid

• moveDiagnosticTests: Moves currently present in the site to

the site.

o If there is not enough room in the site, this operation should fail and return .

o If any dose is not present in the site, this operation should fail and return .

o This operation returns if it succeeds in moving all the doses between sites.

• getDiagnosticTests: Gets the tests that are sampled (i.e., added to a site, and not positive, negative,

or invalid).

o Without arguments, this operation lists all the tests that the lab produced that have been

sampled but still don’t have a result.

o With a argument, this operation lists all the tests currently in that site have been

sampled but still don’t have a result.

• audit: Returns an audit log that tracks tests and site contents.

o With a argument, returns a list of all the sites in which the test

was

▪ The order of the list matters

▪ When moving, tests should be removed from one site before being added to

another site

o With a argument, returns a list of all the tests doses that passed by that site

▪ The order of the list matters

• If an operation changes many tests at once, the order between those tests

does not matter.

• However, all those tests should be on the list after preceding operations

and before later operations

Besides the interface, your solution should also implement the interface for

each individual dose:

interface DiagnosticTest {

 enum Status { READY, SAMPLED , POSITIVE, NEGATIVE , INVALID}

 Status getStatus();

}

Each test should behave as follows:

• All tests are created as

• A test can take a sample, in which case it becomes

• Once a test is sampled, it cannot become again or be used again

• A test can become , , or

• Once a test has a result, it cannot be sampled again, and the result cannot change

Correctness Requirements
Your implementation should keep the following properties at all times:

Correctness 1. getDiagnosticTests operations never list more doses than a site’s capacity

Correctness 2. getDiagnosticTests operations never list more items for the whole lab than the sum of the

capacity of all the sites.

Correctness 3. Adding sampled tests to a site successfully results in those tests being listed in later

getDiagnosticTests operations.

Correctness 4. Once a test is positive, negative, or invalid; that test is not listed in later getDiagnosticTests

operations.

Correctness 5. Each test is listed in one site at most by getDiagnosticTests operations.

Correctness 6. Tests are never “in-transit” due to move operations (i.e., getDiagnosticTests operations not

listing doses removed from the site and still not added to the site).

Correctness 7. Once the status of a test is observed to be or

, it cannot be observed to be anything else from that point on.

Correctness 8. The current contents of any site can be explained by following the entries in the audit log, by

the order in which they appear in the log.

Correctness 9. The current state and location of any test can be explained by following the entries in the

audit log, by the order in which they appear in the log.

Concurrency Requirements
• Safety: Your submission must be linearizable. Each method should take effect instantaneously at

one point in its execution. Before that point, no other thread can see any change made by the

method so far. After that point, all changes are immediately visible to all threads.

• Progress: Your submission must be lock-free. You may use the universal lock-free construction seen

in class on your Assignment 1 submission.

• Submitting a blocking solution results in a 0% grade. This means: Using synchronized or locks

results in a 0% grade.

Entry Point
You should create a new class, on a new file, where you will implement your solution. You should change

method Lab.createLab so that it creates an instance of the class you added. You cannot change any other

part of the code that is provided to you.

Due Date and Resubmission Policy
This assignment is due on April 23 2022 (Saturday) at 5pm CST. There is no late policy.

The code and date used for your submission is defined by the last commit to your Git repository.

To resubmit this assignment, your original grade (as defined by the autograder) should be equal to or higher

than 30% for undergraduate students, and 50% for graduate students. You can resubmit your assignment

until April 30 2022 (following Saturday) at 5pm CST. Together with your resubmission, you will have to

submit a written description of what you changed from the original submission (on Gradescope).

Bonus Points
This assignment has a total of 10% bonus points, which you can earn by using Piazza as described in the

syllabus. Your posts should be public, tagged with the assignment-5 label, and non-anonymous to the

instructors to count towards the bonus.

Submission and Grading
This assignment is submitted through Github, and has an automatic grade component of 70%. You can check

your current grade at any point by submitting your code and checking the autograder. The automatic grade

abstract class Lab {

 static Lab createLab() {

 throw new Error("Not implemented");

 }

}

is determined by 7 tests, that will check if your submission outputs the expected result. Each test is worth

10%.

Together with the code, you should submit three video screen-cast (through Gradescope) that answers the

three questions below by explaining how your code works (one video per question). The questions focus on

concurrency/multi-threading and are worth 10% each. You can record such a video without installing any

software by using the following website: https://screenapp.io/#/

1. How does your submission ensure the linearizability and the lock-free progress of

sampleDiagnosticTests and moveDiagnosticTests? Show the linearization points for returning false

and returning true, and explain why these methods have lock-free progress.

2. How does your submission ensure the linearizability and the lock-free progress of

getDiagnosticTests? Show the linearization points for both methods, and explain why these methods

have lock-free progress.

3. How does your submission ensure the linearizability and the lock-free progress of

DiagnosticTest.getStatus? Show the linearization points, and explain why this method has lock-free

progress.

The maximum length for each video is 2 minutes, instructors will stop watching at the 2 minute mark

(nothing past that point in the video will be graded). This video should be a screencast of your IDE open

on the code submitted, and you should highlight the code. Note that longer videos are not better videos,

and you should record a video as short as needed to show all the expressions and answer the questions

above.

The final grade for the assignment will be the grade of the original submission, for assignments without a

resubmission; or the average between the original grade and the resubmission grade, for assignments with a

resubmission. The grade of the original submission includes any bonus points.

Errors and Omissions
If you find an error or an omission, please post it on Piazza as soon as you find it.

Hardcoding and Academic Integrity
Any hardcoding will result in a 0% grade. Hardcoding is when you submit code that detects which test is

being run, and simply outputs the expected result. For instance, detecting that test 22 is running, and

replacing the usual execution of your submission with System.out.println(“expected

result”).

The academic integrity policy described in the syllabus applies to this assignment. You are responsible for

writing all the code that you submit. We will use an automatic tool that detects plagiarism on all submitted

code, and we will investigate all instances where plagiarism is more than likely.

Please refer to the syllabus for the full academic integrity policy.

https://screenapp.io/#/

