(CS454 Principles of Concurrent Programming
Assignment 2

Prof Luis Pina — University of Illinois Chicago
Spring 2026

In this assignment, you will implement a Lock object that allows threads to execute a critical section in mutual
exclusion, using the concepts introduced in class.

Description

Your lock should extend the following abstract class and implement all abstract methods:

1: public abstract class CS454Lock implements java.util.concurrent.locks.Lock {
2 public abstract void lock();

3 public abstract boolean tryLock();

4: public abstract void unlock();

5 public abstract int isReentered();

6:

Each operation (method) behaves as follows:

e lock: Acquires the lock. If another thread already has the lock, this operation blocks waiting until the current
thread acquires the lock successfully.

e tryLock: Attempts to acquire the lock. If another thread already has the lock, this operation returns false.
Otherwise, this operation acquires the lock and returns true. In either case, tryLock does not block waiting
for the lock.

e unlock: Releases the lock.

e isReentered: Returns true if the lock is currently owned more than once by one thread, false otherwise.
May be called by any thread, even if the calling thread does not own the lock.

You should also add your solution for Assignment 1 and modify it to use the lock you implement.

Correctness Requirements

Your implementation should keep the following properties at all times:
1. Mutual Exclusion: No two threads can acquire the lock at the same time.

2. Deadlock Freedom: If some thread attempts to acquire the lock, then some thread will succeed in acquiring
the lock (not necessarily the same thread).

3. Happens-before: Releasing a lock (i.e., calling unlock) happens-before future acquisitions of that same lock
(i.e., calling lock) by any thread (the same thread that just released the lock or any other thread)

4. Unlock integrity: Calling unlock on an unlocked lock throws the exception java.lang.IllegalMonitorStateException.

5. Unlock validity: Calling unlock on Thread 1 on a lock that is acquired by a different Thread 2 throws the
exception java.lang.IllegalMonitorStateException.

6. Reentrancy: A thread can acquire the same lock while already holding the lock. In this case, the thread must
release the lock the same number of times as it acquired the lock for the lock to become unlocked (e.g., Thread
1 calls lock 3 times, it must call unlock 3 times for any other Thread 2 to be able to acquire the same lock).



Concurrency Requirements

e Your submission should support the properties listed above for an unbounded number of threads, not
known in advance.

e Your implementation of isReentered must be as fast as possible. It should use as few memory operations
as possible, as few instructions as possible, and it should use the weakest possible memory operations. Your
implementation should remain correct as defined above.

e Your submission should not have data-races. Submissions with data-races are considered incorrect, and the
points of all tests passed by chance will be deducted from the final grade.
Performance Requirements

Your submission should optimize for the case of a lock under high contention with short lock-unlock periods. For
instance, a large number of threads attempting to increment a counter protected by your lock. The autograder has
a timeout of 60 seconds for all the tests to run, which is 3x longer than the instructor’s implementation takes.

Entry Point

You should create a new class, on a new file, where you will implement your solution. You should change methods
Yvvid.createYvvid and Yvvid.createLock so that they create instances of the class you added. You cannot change
any other part of the code that is provided to you.

07: abstract class Yvvid {

08: static CS454Lock createLock() {

09: throw new Error("Not implemented");
10: }

11:

12: static Yvvid createYvvid() {

13: throw new Error("Not implemented");
14: }

15: }

Due Date and Resubmission Policy
This assignment is due on g February 21 2026 (Saturday) @ 5pm CT. There is no late policy.
The code and date used for your submission is defined by the last commit to your Git repository.

To resubmit this assignment, your original grade (including all bonuses) should be equal to or higher than
30% for undergraduate students, and 50% for graduate students. You can resubmit your assignment until g Febru-
ary 28 2026 (following Saturday) @ 5pm CT. Together with your resubmission, you will have to submit a
written description of what you changed from the original submission (on Gradescope).

Bonus Points

This assignment has a total of 10% bonus points, which you can earn by using Piazza as described in the syllabus.
Your posts should be public, tagged with the assignment?2 label, and non-anonymous to the instructors to count
towards the bonus.



Submission and Grading

This assignment is submitted through Github, and has an automatic grade component of 60%. You can check your
current grade at any point by submitting your code and checking the autograder. The automatic grade is determined
by 7 tests, that will check if your submission outputs the expected result. Each test is worth 10%.

Together with the code, you should submit three video screen-cast (through Gradescope) that answers
the three questions below by explaining how your code works (one video per question). The questions focus on
concurrency /multi-threading and are worth 10% each.

1. How does your implementation ensure Property 3 (happens-before)?
Explain if your implementation is fair, starvation-free, or neither. See Property 2.

Explain why your implementation of isReentered is as fast as possible.

Ll

Describe 2 steps you took to improve the performance of your implementation locking mechanisms under
contention.

The instructors will grade your submissions by looking at parts of the code you submitted and the video you
recorded. Note that describing any single-threaded behavior will lead to a 0% grade. Your answer should
only consider multi-threaded behavior in the presence of concurrent operations. Also note that correctness properties
may be non-local, so you may have to show more code than just what the property refers to (e.g., to ensure that a
counter does not suffer from data-races when adding to it, some implementations have to show all operations that
modify the counter, such as decrementing the counter).

You can record such a video using Zoom, which you may already have installed to attend lectures remotely.
Simply start a meeting (without any other participants), share your screen, and start recording. Note that Zoom
requires some time to process your video after you record it, so plan accordingly. Extension requests to upload videos
after the due time and date because Zoom is still processing them will be denied.

The maximum length for each video is 1 minute, instructors will stop watching at the 1 minute
mark (nothing past that point in the video will be graded). This video should be a screencast of your IDE
open on the code submitted, and you should highlight the code. Note that longer videos are not better videos, and
you should record a video as short as needed to show all the expressions and answer the questions above.

The final grade for the assignment will be the grade of the original submission, for assignments without a resub-
mission; or the average between the original grade and the resubmission grade, for assignments with a resubmission.
The grade of the original submission includes any bonus points.

Errors and Omissions

If you find an error or an omission, please post it on Piazza as soon as you find it.

Harcoding and Academic Integrity

Any hardcoding will result in a 0% grade. Hardcoding is when you submit code that detects which test is being
run, and simply outputs the expected result. For instance, detecting that test 22 is running, and replacing the usual
execution of your submission with System.out.println(\expected result").

The academic integrity policy described in the syllabus applies to this assignment. You are responsible for writing
all the code that you submit. We will use an automatic tool that detects plagiarism on all submitted code, and we
will investigate all instances where plagiarism is more than likely.

Please refer to the syllabus for the full academic integrity policy.

Important Considerations

Your assignment implementation should follow all the considerations in this section. Note that this section may be
empty now but updated later, please check Piazza for updates.



