(CS454 Principles of Concurrent Programming
Assignment 1

Prof Luis Pina — University of Illinois Chicago
Spring 2026

In this assignment, you will implement a utility to manage an electric bicycle rental system called Yvvid @». The
system comprises of many docks spread throughout a city. Users can ride bikes from one dock to another.

Given that docks have a limited capacity, Yvvid &% requires users to register their trip in advance to ensure
there is enough capacity on the destination dock, otherwise the trip is not allowed. Yvvid @ also allows users to
rent many bikes for the same trip, to encourage groups of people to ride together. It is important that the Yvvid
@ system accounts for all bikes at all times, even if a bike is being ridden right now it still “belongs” to a dock (in
this case, the destination dock).

When bikes become damaged or run out of battery, they are removed from the system to be repaired or recharged,
respectively. Each bike in the system has a unique ID, which is not reused when a bike is removed for the reasons
above. If the same physical bike returns to the system after being repaired or recharged, it counts as a whole new
bike and receives a new ID.

All bikes belong to the same Yvvid @ system (in case other cities adopt it), and cannot be moved from one
system to another.

Description
Your submission should extend the following abstract class:

01: abstract class Yvvid {

02: abstract Dock createDock(int capacity);

03: abstract Bike createBike(int id);

04:

05: abstract boolean addBikes(Dock d, Set bikes);

06: abstract boolean rideBikes(Dock from, Dock to, Set bikes);
07:

08: abstract boolean repairBikes(Dock d, Set bikes);
09: abstract boolean rechargeBikes(Dock d, Set bikes);
10:

11: abstract Set getBikes();

12: abstract Set getBikes(Dock d);

13:

14: abstract List<Action<Dock>> audit(Dock d);

15: abstract List<Action<Bike>> audit(Bike b);

16: }



Each operation (method) behaves as follows:

e createDock: Creates a dock that accommodates a number of bikes — capacity.
e createBike: Creates a bike with a given id. The id is unique across the same Yvvid.
e addBikes: Adds all bikes to the dock.

— addBikes should fail when:

x There is not enough capacity in the dock for all the bikes.

* Any of the bikes is already added to some other dock.

* Any of the bikes is either repaired or recharged (see below).

x For instance, attempting to add two bikes to a dock that only has room for one should fail.

— If all the bikes are added to the dock, addBikes returns true. From now on, the dock has all the bikes.

— If addBikes fails, the dock remains unchanged and addBikes returns false.
e rideBikes: Moves bikes currently present in the from dock to the to dock

— rideBikes should fail when:

* There is not enough room in the to dock

* Any of the bike is not present in the from dock

* Any of the bikes is already added to some other dock.

* Any of the bikes is either repaired or recharged (see below).

— If all the bikes are moved from the from dock to the to dock, rideBikes returns true. From now on, the
to dock has all the bikes, and the from dock has none of the bikes.

— If rideBikes fails, all docks remain unchanged and rideBikes returns false.
e repairBikes: Marks all the given bikes as repaired, and removes them from the dock.

— repairBikes should fail when:

* Any of the bikes is not added to the dock.
x Any of the bikes is already added to some other dock.
x Any of the bikes is already repaired or recharged.

— If all the bikes are marked as repaired, repairBikes returns true. From now on, the dock does not have
any of the bikes.

— If repairBikes fails, the dock and all the bikes remain unchanged and repairBikes returns false.
e rechargeBikes: Similar to repairBikes described above, except that all bikes are marked as recharged instead.

e getBikes: Gets all the bikes in the current dock (i.e., added/moved to the dock and not yet repaired or
recharged).
— Without arguments, getBikes lists all the bikes currently in all the docks part of the Yvvid.
— With a dock argument, getBikes lists all the bikes currently in the provided dock.

e audit: Returns an audit log that tracks docks and bikes.

— With a bike argument, returns a list of all the docks in which the bike ever was.

* The order of the list matters.

* When using rideBikes, bikes should be removed from one dock before being added to another dock.
— With a dock argument, returns a list of all the bikes that were ever in the provided dock.

* The order of the list matters.

x If an operation changes many bikes at once, the order between those bikes does not matter.

x However, all those bikes should be on the list after preceeding operations and before later operations.



17:
18:
19:
20:

Besides the Yvvid class described above, your submission should also implement the Bike interface for each bike,
which defines the getStatus operation:

interface Bike {
enum Status { READY, IN_CIRCULATION, REPAIRED, RECHARGED }
Status getStatus();

}

Each bike should behave as follows:

All bikes are created as READY.

A bike are that is READY can be added to a dock, in which case it becomes IN_.CIRCULATION.
Once a bike is IN_.CIRCULATION, it cannot become READY again.

A bike that is IN.CIRCULATION can be repaired. The status of that bike becomes REPAIRED.

A bike that is IN.CIRCULATION can be recharged. The status of that bike becomes RECHARGED.

Once a bike is either repaired or recharged, it is no longer in its dock and it cannot go back to any dock in the
same Yvvid.

Correctness Requirements

Your implementation should keep the following properties at all times:

1.

10.

getBikes operations never list more bikes than the capacity of the dock.

getBikes operations never list more bikes for the whole Yvvid than the sum of the capacity of all the docks.

Adding ready bikes to any dock successfully results in those bikes being present in later getBikes operations
on the same dock.

. Once a bike is repaired or recharged, that bike is not listed in later getBikes operations.

Each bike is listed in one dock at most by getBikes operations.

Bikes are never “in-transit” due to rideBikes operations (i.e., getBikes operations not listing bikes removed
from the from dock and still not added to the to dock).

Once the status of a bike is observed to be REPAIRED or RECHARGED, it cannot be observed to be anything else
from that point on.

It is not possible to observe partial results of any operation. Each operation either happens completely, or not
at all.

The current contents of any dock can be explained by following the entries in the audit log, by the order in
which they appear in the log.

The current state and location of any bike can be explained by following the entries in the audit log, by the
order in which they appear in the log.



Concurrency Requirements

Your submissions should be thread-safe. That is, if multiple threads call any combination of methods in any order,
none of the correctness properties must be violated.

Furthermore, your implementation must not have any data-races. Your implementation can limit the concur-
rency inside each Yvvid as much as needed.

Entry Point

You should create a new class, on a new file, where you will implement your solution. You should change method
Yvvid.createYvvid so that it creates an instance of the class you added. You cannot change any other part of the
code that is provided to you.

21: abstract class Yvvid {

22: static Yvvid createYvvid() {

23: throw new Error("Not implemented");
24: }

25: }

Due Date and Resubmission Policy
This assignment is due on g February 7 2026 (Saturday) @ 5pm CT. There is no late policy.
The code and date used for your submission is defined by the last commit to your Git repository.

To resubmit this assignment, your original grade (including all bonuses) should be equal to or higher than
30% for undergraduate students, and 50% for graduate students. You can resubmit your assignment until g Febru-
ary 14 2026 (following Saturday) @ 5pm CT. Together with your resubmission, you will have to submit a
written description of what you changed from the original submission (on Gradescope).

Bonus Points

This assignment has a total of 10% bonus points, which you can earn by using Piazza as described in the syllabus.
Your posts should be public, tagged with the assignmentl label, and non-anonymous to the instructors to count
towards the bonus.

Submission and Grading

This assignment is submitted through Github, and has an automatic grade component of 70%. You can check your
current grade at any point by submitting your code and checking the autograder. The automatic grade is determined
by 7 tests, that will check if your submission outputs the expected result. Each test is worth 10%.

Together with the code, you should submit three video screen-cast (through Gradescope) that answers
the three questions below by explaining how your code works (one video per question). The questions focus on
concurrency /multi-threading and are worth 10% each.

1. How does your implementation ensure Properties 5 and 6 in the presence of concurrent operations?

2. How does your implementation ensure Property 8 in the presence of concurrent operations?

3. How does your implementation guarantee the absence of data-races in the presence of concurrent operations?

The instructors will grade your submissions by looking at parts of the code you submitted and the video you
recorded. Note that describing any single-threaded behavior will lead to a 0% grade. Your answer should
only consider multi-threaded behavior in the presence of concurrent operations. Also note that correctness properties
may be non-local, so you may have to show more code than just what the property refers to (e.g., to ensure that a



counter does not suffer from data-races when adding to it, some implementations have to show all operations that
modify the counter, such as decrementing the counter).

You can record such a video using Zoom, which you may already have installed to attend lectures remotely.
Simply start a meeting (without any other participants), share your screen, and start recording. Note that Zoom
requires some time to process your video after you record it, so plan accordingly. Extension requests to upload videos
after the due time and date because Zoom is still processing them will be denied.

The maximum length for each video is 1 minute, instructors will stop watching at the 1 minute
mark (nothing past that point in the video will be graded). This video should be a screencast of your IDE
open on the code submitted, and you should highlight the code. Note that longer videos are not better videos, and
you should record a video as short as needed to show all the expressions and answer the questions above.

The final grade for the assignment will be the grade of the original submission, for assignments without a resub-
mission; or the average between the original grade and the resubmission grade, for assignments with a resubmission.
The grade of the original submission includes any bonus points.

Errors and Omissions

If you find an error or an omission, please post it on Piazza as soon as you find it.

Harcoding and Academic Integrity

Any hardcoding will result in a 0% grade. Hardcoding is when you submit code that detects which test is being
run, and simply outputs the expected result. For instance, detecting that test 22 is running, and replacing the usual
execution of your submission with System.out.println(\expected result").

The academic integrity policy described in the syllabus applies to this assignment. You are responsible for writing
all the code that you submit. We will use an automatic tool that detects plagiarism on all submitted code, and we
will investigate all instances where plagiarism is more than likely.

Please refer to the syllabus for the full academic integrity policy.

Important Considerations

Your assignment implementation should follow all the considerations in this section. Note that this section may be
empty now but updated later, please check Piazza for updates.



