
ASSIGNMENT 5

CS 454: Principles of Concurrent Programming / Spring 2024

Description
In this assignment, you will update your Assignment 1 blockchain.

Changes between Assignment 5 and Assignment 1 are highlighted in this document.

Your submission should extend the following abstract class:

abstract class Blockchain {

 abstract Wallet createWallet(int capacity);

 abstract Coin createCoin(int id);

 abstract boolean addCoins(Wallet w, Set coins);

 abstract boolean transferCoins(Wallet from, wallet to, Set coins);

 abstract boolean payRent(Wallet w, Set coins);

 abstract boolean redeemCoins(Wallet w, Set coins);

 abstract Set getCoins();

 abstract Set getCoins(Wallet w);

 abstract List<Action<Coin>> audit(Wallet w);

 abstract List<Action<Wallet>> audit(Coin c);

}

Each operation (method) behaves as follows:

• createWallet: Creates a wallet that can store a number of coins –

• createCoin: Registers a new mined coin with a given . The is unique across the same

.

• addCoins: Adds all coins to the wallet .

o This operation either adds all the coins, if the wallet has enough capacity, or none.

o For instance, attempting to add two coins to a wallet that only has room for one should not

change the contents of the wallet.

o If all the coins are added to the wallet, this operation returns . If the wallet remains

unchanged, this operation returns .

• transferCoins: Moves currently present in the wallet to the wallet.

o If there is not enough room in the wallet, this operation should fail and return .

o If any coin is not present in the wallet, this operation should fail and return

.

o This operation returns if it succeeds in moving all the coins between wallets.

• redeemCoin: Marks all the given provided as redeemed, which should be present on the

given .

o Similarly to addCoins, this operation either marks all the coins or none.

o Trying to redeem a coin that is not in the current wallet results in failure of the whole

operation (i.e., no coins are redeemed).

o If all the coins are redeemed, this operation returns . If any coin was not redeemed,

then no coins are modified and this operation returns .

• payRent: Similar to redeem described above, but marks all coins as used in rent payments

• getCoins: Gets the coins in a given wallet (i.e., added to the wallet, and not redeemed or used for

rent).

o Without arguments, this operation lists all the coins that the blockchain produced that are

still in circulation.

o With a argument, this operation lists all the coins currently in that wallet that are

still in circulation.

• audit: Returns an audit log that tracks coins and wallets.

o With a argument, returns a list of all the wallets in which the coin ever was

▪ The order of the list matters

▪ When transferring, coins should be removed from one wallet before being added to

another wallet

o With a argument, returns a list of all the coins that passed by that wallet

▪ The order of the list matters

• If an operation changes many coins at once, the order between those coins

does not matter.

• However, all those coins should be on the list after preceding operations

and before later operations

Besides the interface, your solution should also implement the interface for each

coin, which defines the getStatus operation:

interface Coin {

 enum Status { MINED, IN_CIRCULATION, RENT , REDEEMED }

 Status getStatus();

}

Each coins should behave as follows:

• All coins are created as

• A coin can be added to a wallet, in which case it becomes

• Once a coin is in circulation, it cannot become again

• A coin can be used to pay rent, and become

• A coin can be redeemed, and become

• Once a coin is not in circulation, it cannot go back in circulation

Correctness Requirements
Your implementation should keep the following properties at all times:

Correctness 1. getCoins operations never list more coins than a wallet’s capacity

Correctness 2. getCoins operations never list more items for the whole blockchain than the sum of the

capacity of all the wallets.

Correctness 3. Adding mined coins to a wallet successfully results in those coins being listed in later

getCoins operations.

Correctness 4. Once a coin is used to pay rent or redeemed, that coin is not listed in later getCoins

operations.

Correctness 5. Each coin is listed in one wallet at most by getCoins operations.

Correctness 6. Coins are never “in-transit” due to transfer operations (i.e., getCoins operations not listing

coins removed from the wallet and still not added to the wallet).

Correctness 7. Once the status of a coin is observed to be or , it cannot be

observed to be anything else from that point on.

Correctness 8. It is not possible to observe partial results of any operation. Each operation either happens

completely, or not at all.

Correctness 9. The current contents of any wallet can be explained by following the entries in the audit log,

by the order in which they appear in the log.

Correctness 10. The current state and location of any coin can be explained by following the entries in the

audit log, by the order in which they appear in the log.

Concurrency Requirements
• Safety: Your submission must be linearizable. Each method should take effect instantaneously at

one point in its execution. Before that point, no other thread can see any change made by the

method so far. After that point, all changes are immediately visible to all threads.

• Progress: Your submission must be lock-free. You may use the universal lock-free construction seen

in class on your Assignment 1 submission.

• Submitting a blocking solution results in a 0% grade. This means: Using synchronized or locks

results in a 0% grade

Entry Point
You should create a new class, on a new file, where you will implement your solution. You should change

method Blockchain.createBlockchain so that it creates an instance of the class you added. You cannot

change any other part of the code that is provided to you.

Due Date and Resubmission Policy
This assignment is due on April 20 2024 (Saturday) at 5pm CST. There is no late policy.9

The code and date used for your submission is defined by the last commit to your Git repository.

To resubmit this assignment, your original grade (as defined by the autograder) should be equal to or higher

than 30% for undergraduate students, and 50% for graduate students. You can resubmit your assignment

until April 27 2024 (following Saturday) at 5pm CST. Together with your resubmission, you will have to

submit a written description of what you changed from the original submission (on Gradescope).

Submission and Grading
This assignment is submitted through Github, and has an automatic grade component of 60%. You can check

your current grade at any point by submitting your code and checking the autograder. The automatic grade

is determined by 6 tests, that will check if your submission outputs the expected result. Each test is worth

10%.

Together with the code, you should submit three video screen-cast (through Gradescope) that answers the

three questions below by explaining how your code works (one video per question). The questions focus on

concurrency/multi-threading and are worth 10% each. You can record such a video using Zoom (create a

meeting and record your screen)

abstract class Blockchain {

 static Blockchain createBlockchain() {

 throw new Error("Not implemented");

 }

}

1. How does your submission ensure the linearizability of addCoins and transferCoins? Show the

linearization points for returning false and returning true.

2. How does your submission ensure the linearizability of both methods getCoins? Show the

linearization points for both methods.

3. How does your submission ensure the linearizability of Coin.getStatus? Show the linearization

points.

4. What makes your submission lock-free?

The maximum length for each video is 1 minute, instructors will stop watching at the 1 minute mark

(nothing past that point in the video will be graded). This video should be a screencast of your IDE open

on the code submitted, and you should highlight the code. Note that longer videos are not better videos,

and you should record a video as short as needed to show all the expressions and answer the questions

above.

The final grade for the assignment will be the grade of the original submission, for assignments without a

resubmission; or the average between the original grade and the resubmission grade, for assignments with a

resubmission. The grade of the original submission includes any bonus points.

Errors and Omissions
If you find an error or an omission, please post it on Piazza as soon as you find it.

Hardcoding and Academic Integrity
Any hardcoding will result in a 0% grade. Hardcoding is when you submit code that detects which test is

being run, and simply outputs the expected result. For instance, detecting that test 22 is running, and

replacing the usual execution of your submission with System.out.println(“expected

result”).

The academic integrity policy described in the syllabus applies to this assignment. You are responsible for

writing all the code that you submit. We will use an automatic tool that detects plagiarism on all submitted

code, and we will investigate all instances where plagiarism is more than likely.

Please refer to the syllabus for the full academic integrity policy.

