
ASSIGNMENT 4

CS 454: Principles of Concurrent Programming / Spring 2024

Description
In this assignment, you will implement a cryptocurrency based on coins, wallets, and a blockchain. A coin can

be mined and then registered with the blockchain. Coins can be present in one wallet at most. Our sample

cryptocurrency features three novel technologies. First, wallets need to pay rent to the blockchain by giving

up coins. Second, coins can be redeemed by the blockchain for direct access to goods and services. Coins

used to pay rent, as well as redeemed coins, leave circulation and cannot be used anymore in any operation.

Finally, wallets have a maximum number of coins that they can hold (like physical wallets that hold physical

coins).

Changes between Assignment 4 and Assignment 1 are highlighted in this document.

Your submission should extend the following abstract class:

abstract class Blockchain {

 abstract Wallet createWallet(int capacity);

 abstract Coin createCoin(int id);

 abstract boolean addCoins(Wallet w, Set coins);

 abstract boolean transferCoins(Wallet from, wallet to, Set coins);

 abstract boolean payRent(Wallet w, Set coins);

 abstract boolean redeemCoins(Wallet w, Set coins);

 abstract Set getCoins();

 abstract Set getCoins(Wallet w);

 abstract Result<Boolean> addCoinsAsync(Wallet w, Set coins);

 abstract Result<Boolean> payRentAsync (Wallet w, Set coins);

 abstract Result<Boolean> redeemCoinsAsync (Wallet w, Set coins);

 abstract Result<Boolean> transferCoinsAsync (Wallet w, Set coins);

 abstract Result<Set> getCoinsAsync ();

 abstract Result<Set> getCoinsAsync (Wallet w);

 abstract List<Action< Wallet>> audit(Coin c);

 abstract List<Action< Coin>> audit(Wallet w);

}

Each operation (method) behaves as follows:

• createWallet: Creates a wallet that can store a number of coins –

• createCoin: Registers a new mined coin with a given . The is unique across the same

.

• addCoins: Adds all coins to the wallet .

o This operation either adds all the coins, if the wallet has enough capacity, or none.

o For instance, attempting to add two coins to a wallet that only has room for one should not

change the contents of the wallet.

o If all the coins are added to the wallet, this operation returns . If the wallet remains

unchanged, this operation returns .

• transferCoins: Moves currently present in the wallet to the wallet.

o If there is not enough room in the wallet, this operation should fail and return .

o If any coin is not present in the wallet, this operation should fail and return

.

o This operation returns if it succeeds in moving all the coins between wallets.

• redeemCoin: Marks all the given provided as redeemed, which should be present on the

given .

o Similarly to addCoins, this operation either marks all the coins or none.

o Trying to redeem a coin that is not in the current wallet results in failure of the whole

operation (i.e., no coins are redeemed).

o If all the coins are redeemed, this operation returns . If any coin was not redeemed,

then no coins are modified and this operation returns .

• payRent: Similar to redeem described above, but marks all coins as used in rent payments

• getCoins: Gets the coins in a given wallet (i.e., added to the wallet, and not redeemed or used for

rent).

o Without arguments, this operation lists all the coins that the blockchain produced that are

still in circulation.

o With a argument, this operation lists all the coins currently in that wallet that are

still in circulation.

• Asynchronous methods: Each method described above has an asynchronous version

o The asynchronous methods should return as fast as possible

o The asynchronous methods return a Result object, which the caller can then use to retrieve

the result of the operation

o The asynchronous methods do not wait for the operation to be performed

• audit: Returns an audit log that tracks coins and wallets.

o With a argument, returns a list of all the wallets in which the coin ever was

▪ The order of the list matters

▪ When transferring, coins should be removed from one wallet before being added to

another wallet

o With a argument, returns a list of all the coins that passed by that wallet

▪ The order of the list matters

• If an operation changes many coins at once, the order between those coins

does not matter.

• However, all those coins should be on the list after preceding operations

and before later operations

Besides the interface, your solution should also implement the interface for each

coin, which defines the getStatus operation:

interface Coin {

 enum Status { MINED, IN_CIRCULATION, RENT , REDEEMED }

 Status getStatus();

}

Each coins should behave as follows:

• All coins are created as

• A coin can be added to a wallet, in which case it becomes

• Once a coin is in circulation, it cannot become again

• A coin can be used to pay rent, and become

• A coin can be redeemed, and become

• Once a coin is not in circulation, it cannot go back in circulation

Correctness Requirements
Your implementation should keep the following properties at all times:

1. getCoins operations never list more coins than a wallet’s capacity

2. getCoins operations never list more items for the whole blockchain than the sum of the capacity of

all the wallets.

3. Adding mined coins to a wallet successfully results in those coins being listed in later getCoins

operations.

4. Once a coin is used to pay rent or redeemed, that coin is not listed in later getCoins operations.

5. Each coin is listed in one wallet at most by getCoins operations.

6. Coins are never “in-transit” due to transfer operations (i.e., getCoins operations not listing coins

removed from the wallet and still not added to the wallet).

7. Once the status of a coin is observed to be or , it cannot be observed to be

anything else from that point on.

8. It is not possible to observe partial results of any operation on a single wallet. Each operation either

happens completely, or not at all.

9. The current contents of any wallet can be explained by following the entries in the audit log, by the

order in which they appear in the log.

10. The current state and location of any coin can be explained by following the entries in the audit log,

by the order in which they appear in the log.

11. Move operations cannot lose any of the coins being moved. Eventually, all the coins will be either in

the destination wallet (success) or in the source wallet (fail).

Concurrency Requirements
In this assignment, you are provided with an implementation of Wallet that has the following properties:

• The provided wallet already has a set contents to contain all the coins in the wallet that are in

circulation

• Each wallet is associated with its own worker thread

• Each wallet’s contents can be modified only by the worker thread of that wallet

o If any other thread attempts to add/remove coins from a wallet, the code throws an

exception that will cause all tests to fail

• Asynchronous methods must preserve order: If a thread adds a coin to a wallet and then uses it to

pay rent using addCoinsAsync followed by payRentAsync, then both results should

(eventually) be true

• Your implementation cannot use busy-waiting

Bonus Extra Functionality
Besides implementing all of the above, you can claim a 10% bonus by ensuring that Blockchain.getCoins() is

as fast as possible, taking full advantage of as much concurrency as possible.

Entry Point
You should create a new class, on a new file, where you will implement your solution. You should change

method Blockchain.createBlockchain so that it creates an instance of the class you added. You cannot

change any other part of the code that is provided to you.

You should also implement your own result, returned by the asynchronous operations.

Due Date and Resubmission Policy
This assignment is due on March 30 2024 (Saturday) at 5pm CST. There is no late policy.

The code and date used for your submission is defined by the last commit to your Git repository.

To resubmit this assignment, your original grade (as defined by the autograder) should be equal to or higher

than 30% for undergraduate students, and 50% for graduate students. You can resubmit your assignment

until April 6 2024 (following Saturday) at 5pm CST. Together with your resubmission, you will have to submit

a written description of what you changed from the original submission (on Gradescope).

Bonus Points
This assignment has a total of 10% bonus points, which you can earn by using Piazza as described in the

syllabus. Your posts should be public, tagged with the assignment-4 label, and non-anonymous to the

instructors to count towards the bonus.

abstract class Blockchain {

 static Blockchain createBlockchain() {

 throw new Error("Not implemented");

 }

}

Submission and Grading
This assignment is submitted through Github, and has an automatic grade component of 70%. You can check

your current grade at any point by submitting your code and checking the autograder. The automatic grade

is determined by 7 tests, that will check if your submission outputs the expected result. Each test is worth

10%.

Together with the code, you should submit three video screen-cast (through Gradescope) that answers the

three questions below by explaining how your code works (one video per question). The questions focus on

concurrency/multi-threading and are worth 10% each. You can record such a video without installing any

software by using the following website: https://screenapp.io/#/

1. How do you avoid busy-waiting in your implementation?

2. Is it correct to modify Wallet.contents without grabbing a lock? Why?

3. How do you ensure that a failing transfer operation does not result in coins being lost?

4. (bonus) What steps did you take to ensure Blockchain.getCoins() is as fast and concurrent as

possible?

The maximum length for each video is 1 minute, instructors will stop watching at the 1 minute mark

(nothing past that point in the video will be graded). This video should be a screencast of your IDE open

on the code submitted, and you should highlight the code. Note that longer videos are not better videos,

and you should record a video as short as needed to show all the expressions and answer the questions

above.

The final grade for the assignment will be the grade of the original submission, for assignments without a

resubmission; or the average between the original grade and the resubmission grade, for assignments with a

resubmission. The grade of the original submission includes any bonus points.

Errors and Omissions
If you find an error or an omission, please post it on Piazza as soon as you find it.

Hardcoding and Academic Integrity
Any hardcoding will result in a 0% grade. Hardcoding is when you submit code that detects which test is

being run, and simply outputs the expected result. For instance, detecting that test 22 is running, and

replacing the usual execution of your submission with System.out.println(“expected

result”).

The academic integrity policy described in the syllabus applies to this assignment. You are responsible for

writing all the code that you submit. We will use an automatic tool that detects plagiarism on all submitted

code, and we will investigate all instances where plagiarism is more than likely.

Please refer to the syllabus for the full academic integrity policy.

https://screenapp.io/#/

