
ASSIGNMENT 2

CS 454: Principles of Concurrent Programming / Spring 2024

Description
In this assignment, you will implement a Lock object that allows threads to execute a critical section in

mutual exclusion, using the concepts introduced in class. Your lock should extend the following abstract class

and implement all abstract methods:

public abstract class CS454Lock implements java.util.concurrent.locks.Lock {

 public abstract void lock();

 public abstract boolean tryLock();

 public abstract void unlock();

 public abstract int isReentered();

}

Each operation (method) behaves as follows:

• lock: Acquires the lock. If another thread already has the lock, this operation blocks waiting until

the current thread acquires the lock successfully.

• tryLock: Attempts to acquire the lock. If another thread already has the lock, this operation returns

. Otherwise, this operation acquires the lock and returns . This operation does not

block waiting for the lock.

• unlock: Releases the lock.

• isReentered: Returns if the lock is currently owned more than once by one thread,

otherwise. May be called by any thread, even if the calling thread does not own the lock.

You should also add your solution for Assignment 1 and modify it to use the lock you implement.

Correctness Requirements
Your implementation should keep the following properties at all times:

1. Mutual Exclusion: No two threads can acquire the lock at the same time.

2. Deadlock Freedom: If some thread attempts to acquire the lock, then some thread will succeed in

acquiring the lock (not necessarily the same thread).

3. Happens-before: Releasing a lock (i.e., calling) happens-before future acquisitions of that

same lock (i.e., future)

4. Unlock integrity: Calling on an unlocked lock throws the exception

java.lang.IllegalMonitorStateException.

5. Unlock validity: Calling on Thread 1 on a lock that is acquired by Thread 2 throws

the exception java.lang.IllegalMonitorStateException.

6. Reentrancy: A thread can acquire the same lock while already holding the lock. In this case, the

thread must release the lock the same number of times as it acquired the lock for the lock to become

unlocked (e.g., Thread 1 calls 3 times, it must call 3 times for Thread 2 to be

able to acquire the same lock).

Concurrency Requirements
• Your submission should support the properties listed above for an unbounded number of threads,

not known in advance.

• Your implementation of isReentered must be as fast as possible.

• Your submission should not have data-races. Submissions with data-races are considered incorrect,

and the points of all tests passed by chance will be deducted from the final grade.

Performance Requirements
Your submission should optimize for the case of a lock under high contention with short lock-unlock periods.

For instance, a large number of threads attempting to increment a counter protected by your lock. The

autograder has a timeout of 60 seconds for all the tests to run, which is 3x longer than the instructor’s

implementation takes.

Entry Point
You should create a new class, on a new file, where you will implement your solution. You should change

method Blockchain.createBlockchain and Blockchain.getLock so that it creates an instance

of the class you added. Note that getLock always returns a new, unused, lock. You cannot change any

other part of the code that is provided to you.

Due Date and Resubmission Policy
This assignment is due on February 17 2024 (Saturday) at 5pm CST. There is no late policy.

The code and date used for your submission is defined by the last commit to your Git repository.

To resubmit this assignment, your original grade (as defined by the autograder) should be equal to or higher

than 30% (50% for graduate students). You can resubmit your assignment until February 24 2024 (following

Saturday) at 5pm CST. Together with your resubmission, you will have to submit a written description of

what you changed from the original submission (on Gradescope).

Bonus Points
This assignment has a total of 10% bonus points, which you can earn by using Piazza as described in the

syllabus. Your posts should be public, tagged with the assignment-2 label, and non-anonymous to the

instructors to count towards the bonus.

Submission and Grading
This assignment is submitted through Github, and has an automatic grade component of 60%. You can check

your current grade at any point by submitting your code and checking the autograder. The automatic grade

is determined by 6 tests, that will check if your submission outputs the expected result. Each test is worth

10%.

abstract class Blockchain {

 static Lock createLock() {

 throw new Error("Not implemented");

 }

 static Blockchain createBlockchain() {

 throw new Error("Not implemented");

 }

}

Together with the code, you should submit 4 video screen-casts (through Gradescope) that answers the four

questions below by explaining how your code works. The questions focus on concurrency/multi-threading

and are worth 10% each. You can record such a video without installing any software by using the following

website: https://screenapp.io/#/

1. How does your implementation ensure Property 3 (happens-before)?

2. Explain if your implementation is fair, starvation-free, or neither. See Property 2.

3. Explain why your implementation of isReentered is as fast as possible.

4. Describe 2 steps you took to improve the performance of your implementation locking mechanisms

under contention.

The maximum length for each video is 1 minute, instructors will stop watching at the 1 minute mark

(nothing past that point in the video will be graded). This video should be a screencast of your IDE open on

the code submitted, and you should highlight the code. Note that longer videos are not better videos, and

you should record a video as short as needed to show all the expressions and answer the questions above.

The final grade for the assignment will be the grade of the original submission, for assignments without a

resubmission; or the average between the original grade and the resubmission grade, for assignments with a

resubmission. The grade of the original submission includes any bonus points.

Errors and Omissions
If you find an error or an omission, please post it on Piazza as soon as you find it.

Hardcoding and Academic Integrity
Any hardcoding will result in a 0% grade. Hardcoding is when you submit code that detects which test is

being run, and simply outputs the expected result. For instance, detecting that test 22 is running, and

replacing the usual execution of your submission with System.out.println(“expected

result”).

The academic integrity policy described in the syllabus applies to this assignment. You are responsible for

writing all the code that you submit. We will use an automatic tool that detects plagiarism on all submitted

code, and we will investigate all instances where plagiarism is more than likely.

Please refer to the syllabus for the full academic integrity policy.

https://screenapp.io/#/

