
LAB 3

CS 361: Systems Programming / Spring 2023

Description
In this lab session, you will explore:

• Function fork, which allows you to create a new process

• Function execv, which allows to you to run a different executable in the current process

• Functions wait and waitpid, which allow you to wait for a process to terminate

• How to concatenate strings in C with function snprintf

Please read this document carefully and follow the instructions on the last section to complete this lab

session. When you answered all the questions, please show your work to the TA.

fork
Function fork has the following signature:

pid_t fork();

This function is called by a process (i.e., the parent process), takes no arguments, creates a new process (i.e.,

the child process), and returns twice:

• It returns the integer zero to the child process;

• It returns the an integer with the Process ID (PID) of the child to the parent process.

You can tell which process is which by checking the return of the function. If you save that return in a

variable, you can later print the PID of the child process from inside the parent process.

wait / waitpid
Functions wait and waitpid allow a process to wait for the termination of another process. They have

the signature:

pid_t wait(int * status);

pid_t waitpid(pid_t pid, int * status, int options);

Both functions return the PID of the process that terminated. Both functions take an argument status, which

is a pointer to an int. After calling these functions, the int holds the return code of the process that

terminated. Example:

int pid = … ; // Some valid PID

int return_code;

waitpid(pid, &return_code, 0);

 // Blocks until the process with the given PID terminates

printf("%d\n", return_code);

 // Prints the return code of the terminated process

execv
Function execv allows to run a different executable in the current process. It has the signature:

int execv(const char *pathname, char *const argv[]);

It takes the following arguments:

• pathname: the full path to the executable to run (e.g., /bin/echo o)

• args: an array of strings with the following contents:

o Index 0: The full path to the executable to run (e.g., /bin/echo)

o Index 1: The 1st argument to the executable (e.g., Hello)

o Index 2: The 2nd argument to the executable (e.g., World)

o …

o Index N: The Nth argument to the executable

• The position on this array that indicates the end of the arguments should be NULL

For instance, to execute the command echo Hello World, you must first find the full path of the

executable (i.e., /bin/echo) and call execv as follows:

char * p = "/bin/echo";

char * a[10];

a[0] = "/bin/echo";

a[1] = "Hello";

a[2] = "World";

a[3] = NULL; // This indicates the end of the arguments

execv(p, a);

When execv executes successfully, it returns zero times (i.e., it does not return). If execv returns, it

means that there was a problem (e.g., it could not find the executable to run). The example above executes

command /bin/echo Hello World in the current process, which simply prints Hello World to the

terminal and exits with exit code zero.

snprintf
Function printf uses a format string to print to the terminal. Function snprintf is very similar, but it

prints to allocated memory or to a character buffer. Its signature is as follows:

int snprintf(char * str, size_t size, const char *restrict fmt, ...);

This function prints up to size characters to the memory pointed to by str, and returns how many characters

it used. It can be used to concatenate two strings, with a space in between, as follows:

char buffer[20];

char * string1 = "Hello";

char * string2 = "World";

snprintf(buffer, 20, "%s %s", string1, string2);

printf("%s\n", buffer); // Prints Hello World

exit
Function exit terminates the execution of a process. Its signature is as follows:

void exit(int status);

It takes the return code that the processes should exit with, which is a small integer, in which zero means

“success” and non-zero means “failure”. This function terminates the process immediately, and never

returns back to the caller.

Guide
1. Accept the invitation for Lab 3 on Github classroom: https://classroom.github.com/a/PvnonVh_

2. Import the Github repository created to your machine using vscode, as explained in Assignment 0

3. Make sure that you can launch a terminal inside vscode via menus: Terminal > New Terminal

4. The repository has three files that you need: lab3-1.c, lab3-2.c, lab3-3.c.

5. Type make on the terminal and then run file lab3-1 by typing ./lab3-1 on the terminal. Observe

the output. Repeat for files lab3-2 and lab3-3.

6. Run file lab3-1.c under the debugger, using both the parent and child configurations depicted below.

7. Modify file lab3-1.c to answer Question 1.

8. Modify file lab3-2.c to answer Question 2.

9. Modify file lab3-3.c to answer Question 3.

10. Show your work to the TA, commit and push your changes to the repo created in Step 2.

https://classroom.github.com/a/PvnonVh_

Questions
You can write the answers to your questions to file ans.txt in your repository, it then makes it easy to

show your work to the TA.

1. How did you change lab3-1.c so that it prints the following output. You cannot change anything

below line 30? Note that the order of each line matters (i.e., the child must print first).

Hello from child

Hello from parent, I created child process <POSITIVE INTEGER>

This line should be printed only once, by the parent

2. How did you change lab3-2.c so that it prints the following output?

I’m about to execute program /bin/date

date (GNU coreutils) 8.30

Copyright (C) 2018 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later

<https://gnu.org/licenses/gpl.html>.

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Written by David MacKenzie.

Program /bin/date returned with exit code <POSITIVE INTEGER OR ZERO>

3. How did you change lab3-3.c so that it prints the following output?

Trying path /local/bin/uname

Didn’t work, trying something else

Trying path /usr/lib/uname

Didn’t work, trying something else

Trying path /usr/uname

Didn’t work, trying something else

Trying path /usr/bin/core/uname

Didn’t work, trying something else

Trying path /usr/ban/uname

Didn’t work, trying something else

Trying path /usr/bin/uname

Didn’t work, trying something else

Trying path /bin/uname

Linux cs-sys3 5.4.0-126-generic #142-Ubuntu SMP Fri Aug 26 12:12:57 UTC

2022 x86_64 x86_64 x86_64 GNU/Linux

Extra / Optional
1. Execute file lab3-1.c inside the debugger. Notice that shared_variable starts with contents

Initial value. The program changes it to Child changed it. However, just after printing

This line should only be printed once, by the parent the value of that

variable is Initial value. Why?

Grading
Show your UIC card to the TA when you enter the lab, or type your UIN on the chat when joining remotely.

Stay in the session until you show your work, or until the TA announces that the lab is over.

• You have to remain present for the whole lab to get attendance, which you can then use to resubmit

Assignment 2.

• You can leave early after showing your work to the TA (answers to all questions). In this case, you

will get a 5% bonus in Assignment 2.

